Тепло для Петербурга: как цифровые решения помогают модернизировать городскую энергосистему
Обеспечение надежного теплоснабжения в условиях мегаполиса — задача колоссальной сложности. Перед энергетиками стоят амбициозные цели: апгрейд устаревших фондов, переход на экологичные виды топлива и — что особенно актуально — импортозамещение в сфере критически важного программного обеспечения.
Уже сегодня российские компании, отвечающие за теплопотребление, активно используют передовые методы для диагностики и обслуживания сетей — дроны и роботы. Осваивают 3D-печать запчастей для замены недоступных импортных компонентов, разрабатывают собственные инновационные продукты.
Реконструкция тысяч километров сетей и автоматизация котельных (перевод на безлюдный режим и погодозависимое регулирование для точной подачи тепла и экономии ресурсов), по мнению экспертов, требуют современных эффективных подходов к планированию и внедрения цифровых инструментов.
Например, акционерное общество «Топливно-энергетический комплекс Санкт-Петербурга» (АО «ТЭК СПб») — одна из ведущих компаний Северо-Запада, обеспечивающая теплом почти половину Петербурга (48% рынка), активно наращивает усилия в области модернизации и переоборудования производств, осваивает новые технологии в содружестве с отечественными разработчиками. Это позволяет предприятию успешно конкурировать на рынке.
Инновации в действии
Одним из ключевых направлений модернизации стала оптимизация проектной деятельности. После тщательного анализа отечественного рынка программного обеспечения в этой сфере АО «ТЭК СПб» был выбран российский комплекс для информационного моделирования (BIM) — Model Studio CS от компании «СиСофт Девелопмент» — разработчика ПО для автоматизации проектных работ и бизнес-процессов на основе технологии информационного моделирования (ТИМ).
Как известно, в состав Model Studio CS входят ряд программных модулей, которые можно применять комплексно или по отдельности в зависимости от задач автоматизированного проектирования конкретных объектов. Специалисты «ТЭК СПб» выполнили первый пилотный проект в этой технологии и остались довольны его результатом.
Испытательным полигоном для новой ТИМ-платформы стала реконструкция центрального теплового пункта (ЦТП). В качестве инструмента управления 3D-проектом была применена база данных CADLib Проект. Это позволило одновременно работать в едином информационном пространстве как с самой комплексной трехмерной моделью проектируемого объекта, так и с документацией, спецификацией, календарным планом и другой необходимой информацией.
Проектировщики разных специальностей взаимодействовали между собой, используя специализированные модули для архитектурных и строительных решений, железобетонных конструкций, тепломеханического оборудования и трубопроводов, систем электроснабжения, вентиляции и кабельного хозяйства.
— Пилотный проект по реконструкции ЦТП доказал эффективность для задач ТЭК, — констатирует Надежда Евстигнеева, ведущий инженер отдела проектирования АО «ТЭК СПб». — Во-первых, это оптимизация процессов: значительно сократилось время согласований между смежными специалистами. Возможность параллельной работы команды в едином информационном пространстве положительно сказалась на эффективности координации. Во-вторых, встроенные инструменты поиска коллизий позволили находить и устранять противоречия в проекте на этапе разработки, а не на стройплощадке. И наконец автоматизация рутины значительно снизила трудозатраты на формирование документации и спецификаций.
По мнению специалиста, в целом централизованное управление изменениями во всех связанных разделах проекта повысило его качество. В ближайших планах — внедрение программного комплекса Model Studio CS в работу предприятия.
— Без высокотехнологичного подхода к проектированию сегодня невозможно эффективно решать задачи модернизации в таких ключевых отраслях экономики, как энергетика и строительство инфраструктуры, — подчеркнула Надежда Евстигнеева.
В условиях непрерывной деятельности
Успех пилотного проекта по реконструкции ЦТП — результат сотрудничества АО «ТЭК СПб» с петербургской компанией «Ромбит», специалисты которой обладают всей полнотой знаний по лицензированию и прайс-листу разработчика ПО.
Авторизованный партнер «СиСофт Девелопмент» осуществляет на территории Российской Федерации не только распространение комплексной системы информационного моделирования Model Studio CS для 3D-проектирования объектов промышленного и гражданского строительства, но и обеспечивает ее комплексное внедрение и техническую поддержку. Спектр услуг включает модификацию (локализацию, кастомизацию, доработку), реверсивный инжиниринг, настройку, конфигурирование, техническую поддержку и удовлетворение других потребностей, возникающих при внедрении отечественного программного продукта.
Опыт «Ромбит», накопленный командой за годы работы, особенно ценен в условиях импортозамещения, когда пользователи вынуждены переходить на отечественные цифровые инструменты, не останавливая производство. Специалисты компании выстраивают этот процесс максимально плавно, минимизируя сбои в текущей работе. IT-трансформация происходит практически в «фоновом» режиме, что критически важно в условиях непрерывной деятельности ТЭК.
Кадры для цифровой трансформации
Компания-интегратор не только предоставляет необходимые ресурсы, но и обучает специалистов эффективному использованию инструментов как в текущей работе, так и в перспективе развития.
Помощь в изучении и использовании Model Studio CS получают пользователи в различных областях деятельности: инженеры, бухгалтеры, снабженцы, руководители, секретари и другой персонал проектной организации.
Собственный учебный центр АО «ТЭК СПб» играет важнейшую роль в подготовке и переподготовке специалистов для цифровой трансформации. Только за прошлый год здесь прошли обучение более 150 сотрудников. Особый акцент делается на освоении нового отечественного ПО.
— Нам нужно научить коллег работать с новым программным обеспечением в связи с импортозамещением. В 2025 году мы планируем обучить уже 200–250 специалистов, — отметила Ольга Ситникова, заведующая учебным центром АО «ТЭК СПб».
В будущее — с ТИМ-технологиями
Российские предприятия продолжают работать в соответствии с национальными проектами и целями. Например АО «ТЭК СПб» до 2033 года планирует провести модернизацию сотен котельных и ЦТП, реконструировать и построить 4 тыс. км тепловых сетей, полностью уйти от использования мазута в качестве резервного топлива.
В современных условиях критически важны усилия научных, конструкторских и проектных подразделений по осуществлению новых разработок и их внедрению в области импортозамещения. Цифровые инструменты, такие как BIM-технологии, безусловно, становятся неотъемлемой частью этого пути, позволяя повышать эффективность, снижать издержки и обеспечивать надежное тепло для миллионов жителей города.
По мнению экспертов, освоение отечественных программных решений — важный шаг к технологической независимости и устойчивому развитию энергосистемы.

В программном комплексе FROST 3D доступен расчет теплозащиты с XPS ТЕХНОНИКОЛЬ
В пакете программ Frost 3D появилась возможность рассчитать теплозащиту инженерных сооружений при помощи XPS ТЕХНОНИКОЛЬ. Этому способствовало тесное взаимодействие экспертов направления «Полимерная изоляция» ТЕХНОНИКОЛЬ и специалистов Научно-технического центра «Симмэйкерс», разработчика пакета программ для прогнозных расчетов при проектировании на многолетнемерзлых грунтах.
Программа Frost.Термо пакета Frost 3D позволяет создавать 3D геологическую модель грунтов любой сложности, после чего выполнять расчет температурного режима грунтов с учетом влияния зданий и сооружений, в том числе протяженных линейных объектов.
Наличие теплоизоляции ТЕХНОНИКОЛЬ в базе данных материалов дает возможность легко заложить расчетные параметры материала и определить оптимальный вариант защитных мероприятий для безопасной эксплуатации объектов на многолетнемерзлых грунтах.
С помощью программного комплекса Frost 3D можно проработать проектные решения и определить параметры применения экструзионного пенополистирола ТЕХНОНИКОЛЬ на многолетнемерзлых грунтах в следующих конструкциях: трубопроводы, земляное полото автомобильных и железных дорог, основания взлетно-посадочных полос, основания зданий и сооружений, шахты, тоннели, плотины и др. Все расчеты выполняются в соответствии с действующей нормативной документацией строительства.
В программу внесены расчетные характеристики всей линейки экструзионного пенополистирола ТЕХНОНИКОЛЬ, которые располагаются во вкладке Материалы базы данных материалов, физических свойств и условий теплообмена.

Как проверить BIM-модели и избежать ошибок в строительстве
Качественная BIM-модель — ключевой элемент при реализации строительных проектов. Она позволяет увидеть будущее сооружение еще до начала работ, спланировать их и убедиться в правильности проектных решений.
Проверка BIM-моделей
Не выявленные на ранних этапах ошибки могут привести к задержкам в строительстве, дополнительным затратам, а в некоторых случаях и к авариям на объекте.
Чтобы избежать этих проблем BIM-модель будущего объекта должна:
- быть пригодной для использования на последующих этапах проекта;
- отражать оптимальные проектные решения, отвечающие требованиям заказчика и нормативно-технических документов.
Очевидно, что для достижения этих целей, необходима тщательная проверка BIM-модели до начала ее использования: при определении стоимости строительства, планировании строительно-монтажных работ и других ответственных операциях.
Эффективное проведение таких проверок позволит:
- минимизировать вероятность срыва сроков;
- выявлять и исправлять неудачные проектные решения до начала строительно-монтажных работ;
- оптимизировать использование материалов для экономии ресурсов;
- обеспечивать возможность планирования строительно-монтажных работ на основе достаточных и достоверных данных;
- минимизировать вероятности непредвиденного удорожания строительства.
Larix.Manager, разработанный компанией Айбим, позволяет автоматизированно проверить модель как на геометрические коллизии, так и на соответствие информационным требованиям заказчика (EIR) и требованиям нормативно-технических документов.
Этот программный продукт является частью платформы Larix, которая также включает в себя модули:
- Larix.EST для формирования ведомостей объемов работ и бюджета строительства
- Larix.CDB для ведения справочников видов работ
- Larix.Tender для управления закупками
- Larix.Contract для взаимодействия с подрядчиками и контроля выполнения обязательств
Larix.Manager может использоваться как в связке с другими модулями платформы, так и в качестве самостоятельного инструмента для аудита BIM-моделей.
Сводная BIM-модель
Larix.Manager позволяет собирать сводную (федеративную) модель из частных моделей, выполненных в различных САПР. Это дает возможность проверять решения как внутри одного раздела, так и выполнять междисциплинарные проверки. Ведь плохая координация между моделями различных разделов, выполняемых разными специалистами, отделами и даже проектными организациями, как раз и порождает большую часть ошибок, всплывающих на этапе строительства.
Larix.Manager принимает на вход модели в формате IFC, в который могут экспортировать практически все широко используемые САПР. Модели, выполненные в Autodesk Revit, Bentley, Renga и модели, собранные в Autodesk Navisworks, могут экспортироваться во внутренний формат Larix – IMC – с помощью специальных плагинов. Это позволяет исключить формирование промежуточного файла IFC между нативным форматом САПР и Larix.Manager и, как следствие, исключить возможную потерю и искажение данных, вызванных особенностями конвертации в IFC отдельными программными продуктами.
Но даже наличие модели с геометрией не обязательно для проведения некоторых автоматизированных проверок: в Larix.Manager можно загрузить книгу Microsoft Excel, в которой содержится информация о немоделируемых элементах и их параметрах, и выполнить проверку параметров элементов без геометрии.

Проверка параметров
Одним из важнейших критериев качества BIM-модели является корректность заполнения параметров. Их наличие и значения определяют, как можно использовать модель на последующих этапах проекта, насколько это будет эффективно.
Larix.Manager позволяет проверить наличие требуемых параметров у элементов, наличие у них значений и соответствие этих значений требованиям EIR, сводов правил и ГОСТ.
Текстовые параметры можно проверить на заполнение, содержание определенной последовательности символов, числовые – также и на соответствие значений определенному диапазону.
Проверка коллизий
В режиме «Проверка коллизий» можно отследить:
- Пересечения. Например, пересечения элементов различных инженерных систем, отсутствие отверстий в стенах и перекрытиях и другие несоответствия, как правило, вызванные ошибками при моделировании и плохой координацией. Допуски пересечений можно задавать как по максимальному допустимому расстоянию, так и по максимально допустимому объему пересечения.

- Дублирование. Поиск элементов с одинаковой геометрией и положением. Такие ошибки приводят к задвоениям при подсчете объемов работ, и их сложно найти визуально.
- Минимальное расстояние. Поиск ошибок, выраженных в несоблюдении минимально допустимых расстояний между элементами. Например, несоблюдение нормативного расстояния между инженерными системами или недостаточная толщина слоя материала.

- Минимальное расстояние в проекции. Проверка соблюдения минимального расстояния между элементами в плане (в проекции на горизонтальную плоскость). Часто в нормативных документах ограничивается расстояние в плановой проекции, а не в трехмерном пространстве. С помощью данной проверки можно найти, например, нарушения минимального расстояния между наружными инженерными коммуникациями, габаритов мостов и тоннелей по ширине, параметров поперечного профиля автомобильной дороги, расстояний от зон с особыми условиями использования территорий.

- Расположение. Проверка вертикального расстояния между пересекающимися в плане элементами. Наряду с проверкой минимального расстояния и минимального расстояния в проекции помогает выявить проектные ошибки, выраженные в несоблюдении минимально допустимых расстояний. Также этот тип проверки позволяет найти такие трудные для обнаружения ошибки как неверное размещение элементов друг над другом (мокрое помещение над сухим, недостаточное возвышение низа пролетного строения моста над расчетным уровнем высоких вод).

Все описанные автоматизированные проверки реализуются с помощью гибко настраиваемых фильтров проверяемых элементов и условий проверки. Эти проверки сохраняются и загружаются из шаблонов, которые можно многократно использовать для моделей сооружений одного типа.
Результаты автоматизированных проверок формируются в отчеты в формате Microsoft Excel. Отчеты содержат в себе идентификаторы элементов, по которым к ним можно обратиться в программах разработки модели и в самом Larix.Manager. Отчеты по проверкам на коллизии сгруппированы по типам (пересечения, минимальное расстояние, проверка положения) и содержат эскизы элементов с обнаруженными коллизиями.
Визуальная проверка
К сожалению, не все можно проверить, пользуясь исключительно инструментами автоматизированного поиска ошибок. Многие проверки автоматизировать очень сложно или даже невозможно. Поэтому программный продукт, используемый для проверки BIM-моделей, должен также обладать удобными инструментами для визуального контроля.
Larix.Manager позволяет гибко управлять визуализацией BIM-модели:
- Группировать элементы модели по значениям параметров и выстраивать дерево элементов любым удобным способом, отображая только элементы, необходимые для определенной задачи. Для различных целей можно создавать несколько типов группировки одной модели, сохранять их и применять, когда это необходимо.
- Использовать инструменты скрытия, изоляции элементов, сечения.
- Сохранять виды и добавлять комментарии к сохраненным видам, т.е. формировать замечания, выявленные в результате визуальной проверки.
Импортозамещение
Многие иностранные программные продукты, предназначенные для проверки BIM-моделей, например, Autodesk Navisworks и Solibri, ушли с российского рынка.
Со временем все труднее легально работать с зарубежным программным обеспечением. У многих компаний и вовсе нет возможности выбрать иностранные инструменты для работы ввиду специфики их объектов. Вопрос поиска отечественных инструментов взамен привычных зарубежных встает все острее.
Larix.Manager – полностью российская разработка, не использует Autodesk Forge и сервера, расположенные за пределами Российской Федерации. Это десктопное приложение, работающее с файлами на компьютере пользователя или сервере на усмотрение пользователя.