Выбирая энергоэффективность
Современные технологии позволяют повысить энергоэффективность и энергосбережение водного насосного оборудования. В результате достигается значительное уменьшение потребления энергии и улучшение общей производительности систем.
Рациональное использование ресурсов — тренд настоящего времени. Однако без применения в быту и промышленности современных энергоэффективных насосных установок для тепла и водоснабжения достаточно трудно ему следовать. Эксперты «Строительного Еженедельника» рассказали о технологических решениях, которые позволяют не только снизить энергопотребление данными системами, но и увеличить их производительность, надежность и срок службы.
Правильный подбор
Самый лучший способ повышения энергоэффективности — это правильный подбор оборудования, считает руководитель отдела обучения ООО «ДЖИЛЕКС» Александр Шамов. Насос как сердце системы — основной потребитель энергии, поэтому точный расчет снижает затраты пользователя. Второй важный фактор — автоматизация. Пиковые нагрузки при пуске и остановке насоса увеличивают энергопотребление и износ. Устройства плавного пуска и остановки снижают нагрузку на сеть, экономя до 5% энергии. Максимальную экономию (до 50%) дают инверторные блоки управления. Они регулируют производительность насоса, снижая мощность при неполной загрузке (обычно требуется 1/3–1/5 от максимальной производительности). К энергоэффективным насосам относятся модели с частотным регулированием (инвертором). На российском рынке это циркуляционные насосы для отопления и автоматические поверхностные станции. Для погружных скважинных насосов используется внешний блок управления с частотным регулированием.
«Перспективное направление — переход с двигателей переменного тока на постоянный. Это повысит производительность при снижении энергопотребления, особенно в сочетании с инверторным управлением. Наша компания выпускает одни из самых экономичных насосов — насосы серий ”ВОДОМЕТ” и ”ВОДОМЕТ 3Д”. Их конструкция обеспечивает минимальное энергопотребление при высокой производительности. Также готовится к производству поверхностный насос-автомат с водяным охлаждением двигателя “ДЖАМБО ПРО”», — отметил он.
Минимизировать потери
По словам руководителя отдела маркетинга ООО СИЭНПИ РУС Дмитрия Коньшина, чтобы определить пути повышения энергоэффективности насосного оборудования, необходимо рассмотреть источники энергетических потерь. Насосный агрегат состоит из двух основных частей: гидравлической и привода. Наиболее распространенный тип привода — электродвигатель. Для низковольтных электродвигателей классы энергоэффективности описаны в стандарте IEC (ГОСТ IEC 60034.30.1-2016). Во всех насосах CNP по умолчанию используются двигатели класса IE3, оптимального по соотношению КПД и стоимости. КПД таких двигателей может достигать 90–94% в диапазоне средних мощностей. Повышение класса выше IE3 экономически оправданно только в специфических задачах, так как прирост КПД незначителен, а стоимость существенно возрастает. Аналогичная ситуация — и с высоковольтными приводами.
Потери в гидравлической части, продолжает эксперт, делятся на гидравлические, механические и объемные. Эти потери можно минимизировать еще на стадии проектирования. На производстве CNP применяются современные методы численного моделирования (CFD), прототипирование и аддитивные технологии, что позволяет приближаться к максимально возможному КПД — порядка 80–85% для центробежных насосов. «Однако большинство типовых конструкций уже близки к своему технологическому пределу. Повышение эффективности идет за счет долей процента, требует значительных затрат и зачастую не подтверждается вне лабораторных условий. Действительно ощутимый эффект дает применение частотных преобразователей. При переменном потреблении они позволяют снизить энергозатраты на 20–50%, регулируя работу насоса в зависимости от реальной нагрузки. Именно такие решения, как частотно-регулируемые насосы и автоматизированные станции, сегодня наиболее актуальны для промышленного и коммунального сектора», — подчеркивает Дмитрий Коньшин.
Оптимизированная конструкция
Современный насосный агрегат невозможно представить без электродвигателя класса IE3 и выше или преобразователя частоты — это стандартное решение для энергоэффективных систем, отмечает менеджер по развитию продукта компании ИСТРАТЕХ Екатерина Волкова. «Компания ИСТРАТЕХ вносит свой вклад в развитие отрасли: в 2025 году мы запустили собственную линию сборки электродвигателей класса IE3 и представили серию насосов с интегрированным частотным управлением. При этом максимальная энергоэффективность наших одноступенчатых насосов серий ВО и KMG достигается благодаря тщательно продуманной гидравлической части. График наглядно показывает преимущество оптимизированной конструкции корпуса: КПД насоса ВО на 2–8% выше по сравнению с аналогами».

Чтобы сохранить высокий КПД в течение всего срока службы насоса, продолжает Екатерина Волкова, между рабочим колесом и корпусом устанавливается заменяемое уплотнительное кольцо. Оно защищает детали от прямого контакта и минимизирует внутренние утечки жидкости. Со временем из-за износа рабочего колеса и корпуса зазор между элементами увеличивается, что приводит к снижению эффективности, но замена кольца восстанавливает первоначальные характеристики. Для систем с постоянным режимом работы, где применение преобразователя частоты экономически неоправданно, оптимальным решением, по словам Екатерины Волковой, является подрезка рабочего колеса под требуемые параметры. Эта технология, используемая для консольно-моноблочных насосов KMG, обеспечивает снижение потребляемой мощности с минимальным снижением КПД.
Работа в экономию
Ведущий технический специалист компании «Альтерпласт» Сергей Лебедев отмечает, что их компания существует на отопительном рынке 24 года, и одним из направлений поставляемого на рынок оборудования является насосная техника, рассчитанная на бытовой сегмент. Говоря о энергоэффективности насоса, необходимо коснуться темы циркуляционных насосов для системы отопления. Компания поставляет как трехскоростные циркуляционные насосы, так и энергосберегающие для систем водяного отопления под тм ТЕВО. Конечно, все начинается с энергозатрат, мощности системы отопления, потому что на основании тепловых потерь и считается циркуляционный расход насоса. И тут логика проста: меньше мощность системы — меньше циркуляционный расход насоса и, следовательно, меньше энергопотребление. Что касается энергопотребления циркуляционного насоса, тут вывод однозначный: это энергосберегающий насос с мокрым ротором.
«Давайте рассмотрим два типа этих насосов. Возьмем трехскоростной насос ТЕВО 25/6-180 и энергосберегающий насос ТЕВО Е 25/6-180. В первом случае максимальная мощность насоса составляет 93 Вт, во втором — 45 Вт. При условии постоянной работы на максимуме трехскоростной насос будет потреблять около 67 кВт в месяц, энергосберегающий — около 32 кВт. Теперь давайте посмотрим на тарифы по потреблению электроэнергии, к примеру, по Московской области: для сельской местности это 5,13 руб./кВт. То есть месячные затраты не трехскоростном насосе составят 344 рубля, а на энергосберегающем — 164 рубля. Получается больше чем в два раза, хотя изначально кажется, что разница небольшая. Но остается только посчитать, через какое время окупится разница в цене на энергосберегающем и трехскоростном насосе, так как сам энергосберегающий насос стоит дороже. Получается около 16–17 месяцев, пусть грубо это 1,5 года. Дальше энергосберегающий насос работает только в плюс экономии», — подчеркивает Сергей Лебедев.
Совокупность технологий и методов
Руководитель по развитию бизнеса ООО «ВИЛО РУС» Константин Шинкарук рассказывает, что если брать насос как единичное изделие, то повысить его энергоэффективность можно за счет оптимизации конструкции и формы проточной части — повысить КПД агрегата за счет использования энергоэффективных двигателей. Совокупность технологий и методов даст максимальную экономию. «Возьмем самую популярную модель насоса для систем отопления для бытового применения — это насосы с мокрым ротором с резьбовым подключением Ду-25, подачей до 3 м3/ч и напором до 4 м. Стандартный насос модели NOC 25/4 — его максимальная потребляемая мощность составляет всего 70 Вт. Если же взять аналогичный по характеристикам энергоэффективный насос NOCE 25/1-4, то его максимальная потребляемая мощность составляет 25 Вт, что в 2,8 раза меньше. Безусловно, это значения при максимальной производительности насоса, нагрузка на насос меняется во времени. Поэтому при применении различных режимов регулирования мы получим дополнительную экономию за счет, например, снижения частоты вращения электродвигателя при снижении нагрузки. Ведь при снижении частоты вращения в два раза мощность, потребляемая насосом, снижается в восемь раз».
В продуктовой линейке компании WILO RUS, отмечает Константин Шинкарук, присутствуют энергоэффективные насосы с мокрым ротором как для бытового, так и для коммерческого применения: Native NOCE/NOCE F, оснащенные синхронным мотором на постоянных магнитах и интеллектуальной системой регулирования, индекс энергоэффективности EEI <=0,21. Также в этом году планируется запуск серийного производства энергоэффективных насосов с сухим ротором серии Wilo-IL-E и Wilo-Helix VE с синхронными моторами класса энергоэффективности IE5 и интеллектуальной системой регулирования: «Еще мы предлагаем решение для систем водоотведения, а именно: комплектные установки Native N-Lift с синхронными электродвигателями. А также приборы управления собственного производства SK-712, которые управляют стандартными насосами с сухим ротором с асинхронными двигателями класса энергоэффективности IE3, обеспечивая регулирование частоты вращения в зависимости от контролируемого параметра за счет применения частотных преобразователей, обеспечивая каскадный режим включения/выключения и другие функции», — сообщил представитель компании «ВИЛО РУС».
Карельский природный камень — всей стране
«Сандальский Камень» — предприятие, которое производит изделия из природного камня в Республике Карелия. С ними знакомы люди в разных городах России.
Производство расположено на территории в 20 тыс. кв. м в Петрозаводске. В трех цехах задействовано 20 единиц профессионального оборудования. Сотрудники добиваются выхода продукции высокого качества и стабильной работы каждого станка.
«Сандальский Камень» производит изделия из габбро-диабаза и цветных гранитов — от брусчатки до малых архитектурных форм. Предприятие работает с двумя десятками пород природного камня, что позволяет иметь большую вариативность цветов и видов обработки камня.

Все этапы производства — под контролем: тщательно выбирается сырье, неукоснительно соблюдается технология распиловки и полировки камня, особое внимание уделяется упаковке изделий. Все строительные изделия соответствуют самым строгим запросам, а их безупречная обработка вызывает правильное визуальное восприятие у клиентов и заказчиков.
Наши клиенты получают заказы высокого качества по приемлемым ценам в четкие сроки.

Среди заказов, которые реализовала компания, множество проектов по благоустройству городской среды: от участия в реконструкции Псковского Кремля до поставки гранитных плит для строительства станции Московского метрополитена.

По мнению директора ООО «Сандальский Камень» Ивана Крушельницкого, у карельского производства — особый характер и собственная ДНК. «Мы практически не приглашаем людей с опытом, а обучаем сотрудников с нуля. В команде остаются только те, кто каждый день подтверждают свой вдумчивый и профессиональный подход к делу», — указывает Иван Крушельницкий.
Принципы работы компании стабильны и применимы к каждому изделию. «Я уверен, что нет предела совершенству. Мы всегда стремимся к развитию и максимальным показателям. Отвечаю за качество нашей продукции лично», — обещает Иван Крушельницкий.
8 (911) 400-05-31
Шпунтовые ограждения глубоких котлованов: инженерные вызовы и решения от СК ГОРОД
При реализации проектов с глубокими котлованами надежная защита инженерных сооружений является ключевым условием безопасности и долговечности строительства. Шпунтовые ограждения представляют собой конструкцию, обеспечивающую устойчивость стенок котлована и защиту окружающих зданий от осадок и деформаций.
Инженерные вызовы при строительстве глубоких котлованов
Реализация глубоких котлованов сопряжена с рядом технических и геотехнических вызовов. Одной из основных проблем является неоднородность грунтов, которая требует проведения геологических и гидрогеологических исследований для правильного подбора типа шпунта и метода его погружения. Различные типы грунтов – от сильно деформирующихся суглинков до рыхлых песчаных грунтов – влияют на динамику осадок и распределение нагрузок, что требует точного расчета несущей способности ограждения. Кроме того, высокий уровень грунтовых вод, характерный для большинства городских районов, обусловливает применение специальных гидроизоляционных мероприятий и контроль водоотвода, позволяющих предотвратить размывание и деформации стенок котлована.
Еще одной важной задачей является обеспечение безопасности в условиях плотной городской застройки. При выполнении работ вблизи существующих зданий особое внимание уделяется минимизации вибрационных и статических нагрузок, способных повлиять на фундамент окружающих сооружений. Ограниченность пространства и необходимость учитывать расположение подземных коммуникаций накладывают дополнительные требования к технологии погружения шпунтовых ограждений. Эти факторы требуют от специалистов компании СК ГОРОД высокой точности расчетов, оперативного реагирования на изменения условий и использования проверенных методик контроля качества на каждом этапе работ.
Технологические решения в шпунтовых ограждениях
В зависимости от особенностей грунта и гидрогеологических условий специалисты анализируют ситуацию и выбирают наиболее подходящий способ установки шпунтовых ограждений:
- Вибропогружение. Использование высокочастотных безрезонансных вибропогружателей снижает сопротивление грунта и ускоряет процесс погружения, при этом минимизируя воздействие на окружающую инфраструктуру.
- Статическое вдавливание. Этот метод применяется при необходимости исключить вибрационное воздействие, например, вблизи зданий, дорог и прочих инфраструктурных объектов.
Дополнительно для укрепления грунтов используется струйная цементация. Данная технология позволяет укреплять слабые грунты, формируя устойчивый грунто-цементный массив, что значительно снижает риск осадок и деформаций стенок котлована.
Особенности монтажа шпунтовых ограждений глубоких котлованов
При глубине котлована, превышающей 10 метров, применяются дополнительные технологические решения, направленные на обеспечение устойчивости конструкции.
Применение длинных шпунтов позволяет обеспечить непрерывную ограждающую стену, способную выдерживать увеличенные нагрузки, возникающие на большей глубине. Их монтаж требует особого внимания и тщательного расчёта, так как динамика осадок и распределение напряжений в грунте существенно меняется с увеличением глубины.
Многоярусная система крепления используется для обеспечения дополнительной жесткости ограждения и равномерного распределения нагрузок. Каждому ярусу уделяется повышенное внимание в расчетах, так как неправильный выбор или ошибки на одном из уровней могут негативно сказаться на всей конструкции.
Чем глубже котлован, тем значительно возрастают требования к точности расчетов, контроля за фазами монтажа и оперативному реагированию на изменения геотехнических условий. В этом случае особое значение приобретает интеграция комплексных мониторинговых систем и регулярные геодезические проверки.
Примеры успешной реализации
В 2023 году на объекте «Клубный дом TALENTO» в Санкт-Петербурге по адресу ул. Заставской 30 специалисты СК ГОРОД провели комплекс работ по геотехническому расчету, проектированию и устройству шпунтового ограждения и свайного основания в условиях плотной городской застройки. Особенность проекта заключалась в необходимости комбинированного подхода: на участках, расположенных в непосредственной близости к соседним зданиям, использовалось статическое вдавливание шпунтовых свай, а на остальных – метод вибропогружения. Принятые и реализованные проектные и технические решения позволили выполнить разработку котлована глубиной 8 метров в непосредственной близости от объектов культурного наследия и обеспечить отсутствие сверхнормативных осадок.