Требуется доработка
Внедрение ТИМ в изыскательскую деятельность, по мнению специалистов, требует не только адаптации существующих нормативных документов, но и разработки специализированных стандартов.
Технологии информационного моделирования активно внедряются в изыскательскую деятельность, позволяя повысить точность и эффективность реализации проектов. Благодаря ТИМ изыскания становятся более детализированными и информативными.
Вектор на цифровизацию
По словам генерального директора ЗАО «ЛенТИСИЗ» Николая Олейника, ТИМ-визуализация существенно повышает эффективность работы с данными изысканий. Трехмерное представление геологических слоев, экологических факторов, а также цифровые модели местности позволяют быстрее принимать проектные решения. Интерактивные модели дают возможность анализировать различные сценарии освоения площадки, оценивать риски и оптимизировать проектные решения на ранних стадиях. «За последние два года спрос на ТИМ-модели изысканий вырос более чем в три раза. Около 50% наших заказчиков теперь требуют предоставления данных в формате информационных моделей. Особенно высокий интерес проявляют девелоперы крупных проектов и государственные заказчики. Мы прогнозируем дальнейший рост спроса, особенно в связи с постепенным переходом госзаказа на ТИМ-технологии», —добавляет он.
С данными выводами согласен и генеральный директор проектно-изыскательской компании «ЭПИР» Константин Бакиров. Все больше заказчиков, отмечает он, начинают понимать, что качественная цифровая модель участка — это инвестиция в успешную реализацию проекта. Особенно востребованы BIM-модели в следующих случаях: при реализации крупных инфраструктурных и промышленных проектов, в государственных закупках, где ТИМ становится обязательным требованием, при строительстве в сложных геологических условиях. «Если раньше инженерные изыскания предоставлялись в виде текстовых отчетов, таблиц и чертежей, то теперь заказчики все чаще запрашивают ТИМ-модель, содержащую пространственно привязанные геоданные, слои грунтов, гидрогеологические объекты, подземные коммуникации и т. д. С уверенностью можно сказать, что использование ТИМ-моделей инженерных изысканий неуклонно растет, особенно среди клиентов, ориентированных на современные технологии и комплексный подход к управлению проектами. Эта тенденция отражает общий вектор цифровизации строительной отрасли и стремление всех участников проекта к большей точности, наглядности и эффективности».
«На данный момент отмечаем очень высокую востребованность технологий информационного моделирования в инженерных изысканиях, в частности геодезических. Использование ТИМ-модели позволяет наглядно увидеть существующий рельеф местности, расположение зданий и инженерных сетей, выполнить оптимальную посадку зданий. Предварительное моделирование инженерных изысканий особенно актуально для местностей с характерно выраженным рельефом. Оптимальная посадка здания существенно оптимизирует затраты на реализацию проекта», — считает руководитель отдела генерального плана WE-ON Илья Самохвалов.
По словам руководителя отдела инженерных геологических изысканий ГК ОЛИМПРОЕКТ Ивана Якушева, ТИМ в инженерных изысканиях — тема сложная. Спрос на него есть, но чаще он продиктован недавно введенными нормативами, а не реальной необходимостью, особенно на госконтрактах. «Изыскательская отрасль к этому просто не готова: у большинства компаний нет подходящих инструментов, а трудозатраты остаются высокими. Конкретно наша компания прошла большой путь, прежде чем у нас появилась собственная система, которая позволяет собирать, обрабатывать и визуализировать данные в пригодной для передачи в проектные программные комплексы форме, но даже при этом все требует проверки и доработок вручную. Подавляющее большинство коллег-изыскателей, особенно в регионах, до сих пор работают в привычном режиме: отчеты, фото, PDF. Пока ТИМ-модель — это, скорее, дополнительная работа, чем реальный стандарт. При этом ее ценность часто недооценивают: заказчики не всегда понимают, что качественная модель стоит денег. Но тренд задан. Мы не ждем, когда ТИМ в изысканиях станет нормой, мы уже учимся работать в этом контексте, чтобы не догонять, а опережать».

Необходимы спецстандарты
В настоящее время российскими властями продолжается разработка правил и регламентов использования технологий информационного моделирования. По словам Николая Олейника, профессиональное сообщество поддерживает инициативы Минстроя России и Главгосэкспертизы о включении изысканий в состав информационной модели согласно Постановлению Правительства РФ № 614 от 17 мая 2024 года, а также разработку классификаторов, соответствующих видам изысканий, в рамках ГК «Цифровая экономика» и методических рекомендаций ФАУ «Главгосэкспертиза России» по представлению информационных моделей для экспертизы. Также представители отрасли считают важным развитие национальных стандартов и сводов правил, таких как ГОСТ Р 21.1101-2020 и ГОСТ Р 57563-2017, которые регулируют представление результатов инженерных изысканий в цифровом формате. Кроме того, изыскатели видят необходимость в общественном обсуждении СП «Требования к представлению геологических изысканий в BIM». Поддерживают внедрения стандартов обмена информацией между участниками ИМ, таких как IFC, а также открытых форматов обмена геоданными.
«На наш взгляд, для более эффективного применения ТИМ в изыскательской сфере необходимо разработать дополнительные отраслевые регламенты и стандарты, учитывающие аспекты их деятельности. Геология имеет уникальную структуру, в которой важны стратиграфия, лабораторные данные и прослеживаемость пластов, но сейчас нет единого стандарта для цифрового моделирования геологических тел в ТИМ. Экологические изыскания собирают множество точечных и распределенных данных, требующих систематизации, точной привязки и интеграции с результатами мониторинга. Унификация представления данных в этих областях повысит качество проектирования, упростит прохождение экспертизы, а также обеспечит возможность анализа и повторного использования информации на стадии эксплуатации объектов. Таким образом, создание специализированных стандартов для инженерных изысканий в рамках ТИМ является логичным и необходимым шагом на пути цифровой трансформации изыскательской отрасли», — считает Николай Олейник.
Мы также поддерживаем создание единых стандартов, продолжает тему Иван Якушев, но с четким разделением: геология и экология — разные дисциплины с разной ролью в проектировании. «Геология — это основа для расчета конструкций и фундаментов, а экология, за редкими исключениями, конструктив не затрагивает. Поэтому BIM для экологии — скорее, табличная модель с приоритетными индикаторами, локализованными под особенности конкретного региона. В то же время для геологии необходимо аккумулировать лабораторные и полевые данные в структурированную, проверяемую базу. Главное — не перегружать ее деталями, не несущими практической ценности, а фокусироваться на информации, пригодной для повторных расчетов и моделирования», — констатирует представитель ГК ОЛИМПРОЕКТ.
По словам Ильи Самохвалова, в сопроводительной документации к изысканиям хотелось бы видеть приложенными исходные модели xml. Это бы значительно повысило и качество, и оперативность работы с ТИМ-моделью инженерных изысканий. «Было бы здорово объединить некоторые изыскания или так же в объеме получать комбинированные изыскания, например геодезические объединить с геологическими или дендрологическими изысканиями. Это позволило бы наглядно, на ранних стадиях видеть существующее положение. Отображение существующих инженерных сетей, зданий и сооружений в ТИМ стало бы огромным приобретением на ранних этапах», — полагает он.
Подготовка 3D-моделей грунтов, отмечает Константин Бакиров, — важный этап в геотехническом моделировании, позволяющий визуализировать геологическое напластование, учитывать сложные пересечения слоев грунта, зоны ослабленных пород, карстовые полости, уровень и направление движения подземных вод. Это дает возможность заранее выявить потенциально проблемные зоны и снизить неопределенность в дальнейших инженерных расчетах. «Интеграция этих моделей в геотехническое 3D-моделирование существенно упрощает и ускоряет расчеты, обеспечивая более точную оценку взаимодействия системы “фундамент — основание”. Это особенно важно при проектировании, реконструкции, усилении зданий и сооружений, когда даже небольшие особенности грунтового основания могут существенно повлиять на поведение конструкции», — резюмирует глава ПИК «ЭПИР».
Информационное моделирование
Цифровизация ворвалась во все сферы жизнедеятельности человека. Не осталось в стороне и строительство. Чертежный ватман и логарифмическая линейка уступили место калькулятору и графическим редакторам типа AutoCad. Нельзя говорить, что строительные проекты, уходящих эпох были хуже и примитивнее. Все дело в том, что современные методы и масштабы строительства требуют скорости, точности, четкости в планировании и взаимодействии всех звеньев. Обеспечить слаженность в работе призвана технология BIM.
BIM - это аббревиатура английской фразы "Building information Modeling", что в переводе означает строительное информационное моделирование.
BIM-технология позволяет создавать модели строительных объектов любой сложности: домов, мостов, дорог, тоннелей, скоростных автотрасс и прочего. BIM по парметрам визуализации сходно с 3D моделированием. Отличие заключается в том, что к BIM привязана обширная база данных.
Суть технологии информационного моделирования
При проектировании объекта, используя технологию BIM, в процесс одновременно могут быть включены все участвующие стороны. Техническая сторона технологии заключается в том, что 3D- объект создается из компонентов, находящихся в информационной базе. В электронную базу загружены данные о стоимости материалов, физико-механические характеристики, условия строительства: геологические, экологичесике и климатические данные. При изменении какого-либо составляющего в схеме проектируемого объекта, алгоритм мгновенно просчитает новые параметры.
Для чего необходим BIM
- Информационное моделирование позволяет создать объект, в котjром все участки взаимосвязаны.
- Технология позволяет предсказать процессы, котjрые будут происходить в процессе эксплуатации.
- Предоставляет возможность моделирования аварийных ситуаций и варианты недопущения таковых.
- Обладая исходными данными, система может заранее вычислить свойства проектируемого объекта.
- BIM призван оптимизировать во всех отношениях процесс строительства.
- Внедрение цифровых технологий - это новый виток в развитии строительной индустрии.

Возможности BIM
Building information Modeling вмещает в себя различные научные дисциплины. При помощи данной технологии в одном проекте можно объединить результаты решений по архитектуре, экономике, экологии, дизайну, инженерии.
Информационное моделирование позволяет коллективную работу над проектом. Одновременно может быть предоставлен доступ архитекторам, проектировщикам, сметчикам, дизайнерам. Каждый специалист может работать независимо от другого на своем уровне. Руководитель проекта предоставляет уровни доступа специалистам. При внесении изменений система гибко реагирует и корректирует проект одновременно на всех этапах.
Заказчикам и застройщикам BIM помогает в том, что:
- Визуализирует объект
- Всесторонне рассчитывает эксплуатационные характеристики
- Позволяет избежать ошибок в проектировании и строительстве
- Следить за соблюдением технологии возведения объекта и вовремя выявлять отклонения.
- Дает возможность синхронизировать все этапы работ.
- Сводятся к нулю недопонимания между участниками проекта. Задумка заказчика, благодаря цифровым технологиям и объемному моделированию "оживет" на экране. Совершенно однозначно система даст ответ насколько возможно реализовать идею, что нужно изменить и в какие траты это выльется.
Все это осуществимо только при условии создания единой информационной среды, которая обеспечит моментальный доступ к базе данных всех специалистов проекта. Возможности современных электронных систем позволяют создать виртуальную реальность, в которой возможно отслеживать и прогнозировать поведение каждого строительного узла из любой геоточки планеты.

BIM-технология в мире
Изобретение информационного моделирования повлияло на коммуникацию между специалистами в строительной индустрии, а особенно в международных проектах. Благодаря полной и достоверной информации об объекте: проектная стоимость, технологии, материалы, особенности эксплуатации- достигается эффективное взаимодействие и обмен опытом.
Великобритания
Страна, которая первая внедрила и активно развивает технолгии информационного моделирования в стрительстве. С 2016 года законодательно закреплено, что все бюджетные проекты должны создаваться при помощи BIM. Это позволяет государству отслеживать целевое расходование средств.
Соединенные Штаты Америки
Является активным пользователем BIM-технологий. В США более 70% проектных организаций применяют информационное моделирование.
Испания
С 2018 года BIM является обязательным при строителстве государственных объектов.
Китай
Страна с самой быстроразвивающейся экономикой пока не ввела обязательных требований к использованию BIM, но применение цифровых технологий в строительстве приветствуется. Китайцы оцифровали проекты по строительству атомных электростанций, что говорит о твердом решении внедрять повсеместно информационное моделирование.
Россия
Еще в 2016 году Министерство строительства России вносило инициативу об обязательном использовании BIM в стройках с государственным участием. В 2019 году понятие об информационной модели объекта капитального строительства было закреплено в Градостроительном кодексе, в статье 57. В марте 2020 Михаил Мишустин подписал постановление, согласно которому все бюджетные объекты должны создаваться при помощи BIM.

Как создается BIM-модель
Информационные технологии моделирования относительно новое направление в строительстве. Многие специалисты убеждены, что для достижения необходимого результата требуется длительное обучение, навыки программирования и глубокий опыт работы в графических редакторах. Это далеко не так. Интерфейс программного обеспечения выстроен таким образом, чтобы быть понятным всем участникам проекта. Участки по составлению сметы, финансовых отчетов, архитектурных решений, визуализации разнесены в определенные разделы. При взаимодействии с нужными разделами специалист касается только своего направления и ему не нужно расширять дополнять багаж профессиональных знаний.
В базе данных хранятся всевозможные варианты конструктивных элементов. Проектирование ведется поэтапно от подготовки основания до наивысшей степени готовности объекта к эксплуатации. По "кирпичикам" собираются и выстраиваются все элементы. Например, в упрощенном варианте работа по проекту выглядит так: согласно данным геологических изысканий, предельным состояниям грунтов и расчетных нагрузок на объекте применим ленточный фундамент. В библиотеке данных проектировщику необходимо выбрать вид фундамента, тип подушки, марку бетона, марку арматуры, материал опалубки и физические размеры фундамента. Автоматически подтянуться данные о необходимом количестве материала, его стоимости, сформируется объемный план. При этом в модели будут присутствовать не только графические изображения, но и полная информация о свойствах фундамента, включая допустимые нагрузки и предельные деформации. Далее можно подобным образом переходить к стенам и перекрытиям.

Как функционирует BIM
Чтобы получить объемную информационную модель объекта капитального строительства необходимо выполнить несколько этапов:
- Проектирование. Первым шагом служит создание 3D- модели объекта с подробными чертежами, объемными видами. Задействуя графический конструктор, параметры объемной модели вносятся в программу, которая рассчитывает характеристики элементов объекта, формирует рабочие чертежи, планирует затраты, готовит спецификацию, описывает перечень предстоящих работ. Для подготовки полноценного проекта к экспертизе и получению разрешения на строительство программа рассчитывает инженерные и энергетические сети, производит теплотехнический расчет здания с учетом климатических особенностей, рельефа, естественной освещенности, формирует данные по энергоэффективности. Помимо основных проектных параметров компьютер дополняет проект данными о рациональной логистике, необходимых вспомогательных объектах и локациях: подъездные пути, площадки разгрузки и хранения, временное водоснабжение и водоотведение, место для мойки спец.техники, бытовки, административные здания и так далее. Заключительным пунктом выступает составление детального плана работ, график выполнения этапов строительства, подбор необходимого количества техники и трудовых ресурсов.
- Строительство. Технология информационного моделирования позволяет на этапе строительства полностью контролировать ход проведения строительных работ. Делает возможным следить как расходуются финансовые средства заложенные в бюджет стройки. Фиксирует отклонения и корректирует изменения в рамках проекта все управленческие решения. При этом ситуацию на объекте могут отслеживать все заинтересованные стороны: заказчик, застройщик, инвестор, контролирующие и надзорные органы.
- Эксплуатация. После сдачи строительного объекта в эксплуатацию технологии BIM имеют технические возможности сбора информации о состоянии строения. Данные собираются при помощи датчиков и систем контроля, котрые передают параметры объекта в компьютерную систему. Это позволяет:
-предотвратить аварийные ситуации.
- отслеживать износ материалов.
- оперативно вносить изменения в конструкцию объектов, зданий и сооружений
- оснастить в короткий срок новым оборудованием объект.
- наладить взаимодействие инженерных служб.
- составить график проведения регламентных работ по обслуживанию
- контролировать оплату и расходы ресурсов: электричества, водоснабжения, водоотведения, кондиционирования, теплоснабжения.
- формировать отчет об эффективности управления недвижимостью. Сюда могут быть включены показатели по аренде, продаже площадей, оплате затрат на содержание и обслуживание.
- проводить технический аудит, планировать мероприятия по развитию инфраструктуры объекта.

Эффект от использования BIM
Анализ схожих, равнозначных реализованных строительных проектов позволяет говорить о различного рода преимуществах цифрового моделирования перед традиционным подходом. Опыт строительства с применением цифровых технологий позволил выделить наиболее яркие эффекты:
- Серьезная экономия расходов на строительство- до 20%
- Сокращение времени возведения объекта на 12%. А это влияет на срок окупаемости и инвестиционной привлекательности проекта в целом.
- Снижение затрат на эксплуатацию.
- Более точная информация для управления на 72%. Связано с тем, что в электронном виде всегда можно оперативно найти необходимую информацию. В случае традиционного подхода нужно значительное количество времени для поиска нужных чертежей, схем, и их актуализации.
- Уменьшение времени на внутриведомственные согласования, увеличение эффективности коммуникации участников проекта на 60%.
- Повышается точность планирования, снижается количество ошибок, исправлений и доработок на 70%.
- Укрепление имиджа компании на 82%
- Увеличение конкурентоспособности при других равных показателях на 60%
Как видно из приведенных цифр внедрение цифровых технологий неизбежно. Цифровизация не оставляет никаких шансов традиционным методам. Достижение высоких показателей и поддержание уровня эффективности возможно только при государственной поддержке, грамотном нормативно-правовом регулировании, проведении политики с четко очерченными задачами.
Перспективы цифровизации
BIM - новая, еще не устоявшаяся, многим непонятная технология. Но и она не предел развития цифровизации. Следующим этапом развития информационного моделирования в строительстве заявлен CIM- City information modelling. Это технология, которая позволяет моделировать развитие городского пространства. По сути является цифровым двойником города. На основе цифровых данных упрощается решение сложнейших вопросов по реконструкции, развитию инфраструктуры, имиджу города, экологии, качеству жизни граждан. До широкого внедрения еще требуется время, но уже в настоящее время руководителями с новаторским мышлением организуются пилотные проекты в рамках планов по развитию городского пространства. Россия в этом вопросе может опираться на опыт зарубежных партнеров, где расчетным и опытным путем доказали колоссальную эффективность цифрового моделирования объектов капитального строительства.
Без всяких сомнений цифровые технологии в России будут наращивать обороты параллельно с тенденциями развития строительной отрасли. BI-моделирование уже актуально в проектировании, строительстве и эксплуатации "умных домов" , "эко домов" и объектов с государственным участием. В масштабе частного гражданского и промышленного строения технологии объемного информационного моделирования пока не получили широкого распространения. Причиной тому служит слабая проработка правовой базы, недочеты в нормативной документации, бюрократические барьеры, консерватизм мышления. Но с каждым днем все больше компаний понимают, что внедрение BIM делает бизнес более доходным, менее трудо и время затратным, а главное, конкурентным и открывает доступ к международным проектам.
Гладко и легко: готовые финишные шпаклевки Kiilto XM и XF
Чтобы облегчить подготовку оснований перед поклейкой обоев или покраской, компания Kiilto выпустила серию готовых шпаклевок со смесями для самых разных целей — от заделки и обработки простых швов до выравнивания стен во влажных помещениях.
Шпаклевки Kiilto XM и XF представляют собой готовые смеси с легким наполнителем для финишного выравнивания стен и потолков до их окраски или оклейки обоями в сухих внутренних помещениях.
Преимущества новинок
Основное отличительное преимущество новых смесей — низкий расход продукта. Он составляет 1,0 кг на кв. метр в слое 1 мм (для сравнения: в среднем выравнивающие смеси имеют показатель 1,6–1,8 кг на кв. метр в слое 1 мм). Соответственно, стоимость квадратного метра обработанной поверхности тоже становится существенно ниже, как и общие затраты на ремонтные работы.
Специалисты Kiilto объясняют, за счет чего удалось достичь такого показателя. Основную роль играет наполнитель. От него зависит не только расход, но и слой нанесения, пластичность шпаклевки, легкость шлифования и гладкость поверхности. В шпаклевках Kiilto XM/XF используется смесь легкого наполнителя и известняка.
Толщина слоя от 0 мм
Толщина слоя — весьма важный показатель, обеспечивающий идеально гладкую поверхность под покраску или поклейку обоев. Наполнитель финишных шпаклевок Kiilto XM и XF состоит из мельчайших частиц, благодаря чему их можно наносить тонким слоем. Шпаклевка Kiilto XF содержит более мелкий наполнитель и подходит для нанесения от 0 до 2 мм. В XM наполнитель чуть крупнее и подходит для нанесения от 0 до 3 мм сплошного слоя и до 5 мм для устранения локальных дефектов поверхности.

Легко, быстро, гладко
Шпаклевки Kiilto XM/XF можно наносить как ручным, так и машинным способом. Скорость высыхания смесей Kiilto XM/XF — 2–3 мм/ч, в то время как средняя скорость высыхания одного слоя — 2–3 мм/сутки. Это стало возможно благодаря специальным компонентам, ускоряющим высыхание. Высокая скорость высыхания позволяет не тратить время на технологическую паузу перед шлифовкой и окрашиванием.
Благодаря своим свойствам готовые шпаклевки Kiilto XM/XF без труда устранят обнаруженные в процессе работы неровности, а вы получите безупречно гладкую поверхность стен и потолков.
Kiilto Russia
196105, Россия, Санкт-Петербург
ул. Решетникова, 14А
Тел. 8 800 333 30 33