Технологичнее и умнее


24.04.2025 09:00

Современные системы пожаротушения становятся все более высокотехнологичными и эффективными. Некоторые из них не просто реагируют на пожар, но и могут предотвратить возможность его появления в интеграции с другой инженерной инфраструктурой эксплуатации зданий. Подробнее о тенденциях и новых решениях в системах пожаротушения рассказывают эксперты «Строительного Еженедельника».


Предупредить ЧП

По словам руководителя направления «Насосные установки» ООО СИЭНПИ РУС Ильи Плеханова, сейчас наблюдаются несколько трендов в системах пожаротушения, которые свидетельствуют о переходе к более интеллектуальным и интегрированным моделям. Во-первых, можно отметить активное внедрение устройств управления, способных интегрироваться в общую систему пожаротушения объекта. Это достигается за счет применения технологичных решений в области автоматизации, поддерживающих современные протоколы связи. Во-вторых, есть тенденция к модульности и гибкости систем пожаротушения, что позволяет адаптировать их под различные нужды и требования. Растет популярность комплексных решений «под ключ», предлагающих оборудование для пожаротушения и повышения давления, что снижает общие эксплуатационные затраты и повышает надежность систем.

«В целом появление новых материалов, передовых технологий проектирования и интеграции в общую систему жизнеобеспечения зданий привело к улучшению эксплуатационных характеристик, повышению надежности и расширению функциональности оборудования в системах пожаротушения. Насосные установки, например, стали более компактными и производительными, емкости — более легкими и прочными. Средства диспетчеризации и автоматизации позволяют осуществлять удаленный мониторинг и управление системами пожаротушения. Все эти улучшения существенно повышают безопасность эксплуатации современных зданий и сооружений», — подчеркивает Илья Плеханов.

Схожие выводы делает и главный специалист по пожарной безопасности ГК ОЛИМПРОЕКТ Владлен Ткач. Он отмечает, что сегодня системы пожаротушения — это уже не просто реакция на возгорание, а скорее, комплекс мер, направленных на его предотвращение и минимизацию последствий. Основными трендами являются интеллектуализация, экологичность и интеграция с другими инженерными системами здания. Особое внимание уделяется использованию экологически чистых огнетушащих веществ, безопасных для людей и окружающей среды, а также интеграции систем пожаротушения с другими инженерными системами, что позволяет более эффективно управлять безопасностью здания.

«Внедрение новых технологий, безусловно, требует определенных затрат, особенно на этапе проектирования и монтажа. Однако в долгосрочной перспективе это оправдывается за счет повышения уровня безопасности, снижения риска материального ущерба и, как ни странно, снижения эксплуатационных расходов», — добавляет эксперт.

Правильный подбор

По мнению руководителя отдела сопровождения проектирования ГК «ИСП» Веры Сазоновой, при подборе системы в первую очередь важно ответить на вопрос: «Что мы защищаем и каковы могут быть последствия а) самого пожара, б) тушения пожара?» В условной серверной или электрощитовой можно потушить пожар порошком или пеной, но при этом вывести из строя все оборудование, а вместе с ним остановить работу всего объекта. Поэтому там, где речь идет о защите ценного имущества, электроустановок, критически важного оборудования, рекомендуем закладывать только газовое пожаротушение.

«Сейчас активно развиваются системы удаленного мониторинга, что повышает оперативность реагирования и снижает затраты на обслуживание. Мы первыми на рынке объединили IT-технологии с газовым пожаротушением и, по сути, завели модули газового пожаротушения в сеть Ethernet. SNMP-модули газового пожаротушения уже в этом году выйдут на рынок. Добавлю, что в последние годы совершенствование идет в части отдельных технических характеристик и конструктивных особенностей оборудования, влияющих на сроки работы до первого освидетельствования, радиуса распыла ГОТВ, удобства монтажа и т. п. В частности, мы работаем над применением в модулях пожаротушения “ЗАРЯ” и “ИМПЕРАТОР” инновационных материалов, повышающих качество и долговечность наших продуктов», — сообщила специалист.

Главный специалист по системам водоснабжения и водоотведения WE-ON GROUP Валентин Баличев отмечает, что самый главный и основной тренд в системах пожаротушения — это импортозамещение основного оборудования российскими аналогами. За последнее время возможности оборудования различных систем пожаротушения становятся все совершеннее, что гарантирует безопасность людей в зданиях, оборудованных данными системами.

Особенностей проектирования систем пожаротушения —множество, рассказывает Валентин Баличев, каждый объект уникален в этом плане. Да, есть типовые решения, которые применяются почти в каждом объекте, но с адаптацией под конкретный объект. Для верного подбора систем пожаротушения лучше обратиться к специалистам, специализирующимся на данных системах. «Для внутреннего противопожарного водопровода и системы автоматического водяного пожаротушения это будет очень похожее основное оборудование, такое как насосные установки повышения давления, задвижки с концевыми выключателями, сигнализаторы потока жидкости, реле давления и другие элементы. А вот для автоматического газового или порошкового пожаротушения этих элементов уже не будет, так как в основном используются модульные системы, располагаемые непосредственно в защищаемых помещениях».

Составляющие системы

В настоящее время серьезно технологически меняются и составляющие систем пожаротушения. Как отмечает начальник отдела систем внутреннего водопровода, канализации и пожаротушения № 1 MARKS GROUP Алексей Егрищин, среди данных трендов можно выделить повсеместное применение полимерных трубопроводов для систем автоматического водяного пожаротушения. Они не подвержены коррозии, имеют более длительные сроки заявленной эксплуатации, легкий вес. Простота монтажа полимерных трубопроводов сокращает сроки монтажных и наладочных работ. Также все активнее применяются на уникальных и специальных объектах оросители с принудительным пуском. Они обеспечивают срабатывание системы тушения пожара раньше традиционной, повышают эффективность тушения пожара. В тренде — применение систем пожаротушения тонкораспыленной водой, что предполагает значительно меньший расход воды и безопасность огнетушащего вещества для здоровья человека, минимизацию ущерба от тушения пожара для сохранения интерьеров исторических зданий и объектов с дорогостоящим оборудованием и т. д.

Также, по словам Алексея Егрищина, растет спрос на роботизированные установки пожаротушения. Преимуществами применения таких систем являются автоматический режим работы, сокращение времени обнаружения и тушения пожара, точность подачи огнетушащего вещества, возможность дистанционного управления и перепрограммирования при изменении планировочных решений. «Безопасность для человека, быстродействие, высокая эффективность, низкий ущерб при работе системы тушения пожара — это современные требования, предъявляемые к установкам пожаротушения. Переход к управлению установками пожаротушения искусственным интеллектом, прогнозирование, более раннее обнаружение, интеграция смежных систем пожаротушения, повышение уровня защиты человека — это следующий шаг развития, который происходит сегодня», — уверен эксперт.

Можно выделить несколько ключевых трендов, которые направлены на повышение эффективности в области водяного пожаротушения, считает инженер по качеству ООО «ПАМПМЭН РУС» Михаил Коврижных. Одним из таких трендов является изменение размера капли в системах тонкораспыленного пожаротушения, не превышающих 100 микрон. Также важным аспектом является комплексная автоматизация — интеграция систем пожарной сигнализации, систем пожаротушения и остальных инженерных систем здания, которые помогают своевременно выявить очаги пожара и локализовать их, минимизируя последствия. Управляемые системы тонкораспыленного пожаротушения позволяют не только обеспечить безопасную эвакуацию, создав высокую концентрацию водяного тумана для охлаждения воздуха и увеличения видимости в дыму по всей зоне эвакуации, но минимизировать ущерб от самого тушения.

«В пожаротушении, помимо появления инноваций, важную роль играет насосное оборудование, которое является центральным элементом системы. Современные установки обеспечивают нужное давление и бесперебойную подачу воды. Это особенно критично для крупных объектов, где время реакции может иметь решающее значение. Насосы должны соответствовать высочайшим требованиям безопасности и надежности, мгновенно запускаться и работать стабильно», — отмечает Михаил Коврижных.

О значимости насосного оборудования в системах пожаротушения говорит и менеджер по развитию бизнеса в подсегменте рынка «Здания и сооружения — Коммерческий» ООО «ВИЛО РУС» Вадим Федосеев. По его словам, «сердцем» любой системы автоматической водяной системы пожаротушения является насосная установка. Основной ошибкой проектирования системы является недостаточный гидравлический расчет. Одного расчета для подбора насосной установки недостаточно. Если учитывать, что сроки проектирования зачастую сильно ограничены, то выполнить все необходимые расчеты во многих случаях невозможно. «Компания WILO RUS разработала программный продукт плагин для автоматического расчета систем водяного пожаротушения, предназначенный для работы в среде BIM-проектирования. Он позволяет, не выходя из BIM-модели системы водяного пожаротушения, выполнить неограниченное число гидравлических расчетов системы за считанные минуты. По результатам расчета плагин подбирает установку пожаротушения, которая наиболее подходит для обеспечения рассчитываемой системы нормативными показателями огнетушащего вещества и осуществляет проверку подобранной насосной установки на возможность возникновения кавитации».

Наша компания, подчеркнул Вадим Федосеев, постоянно совершенствует насосные установки в соответствии с актуальными нормативными требованиями. Это не только облегчает их монтаж, но и упрощает дальнейшее обслуживание оборудования. Одной из последних модернизаций является блочно-модульная конструкция насосных установок и контроль всех запорных механизмов на открытое и закрытое состояние запорного органа. Данная разработка обеспечивает возможность установки насосного оборудования в любые ГОСТированные проемы.


ИСТОЧНИК ФОТО: ASNinfo

Подписывайтесь на нас:

Почти 60% городских жителей хотят избавиться от шума из соседних квартир


07.04.2023 09:35

Все больше людей при ремонте уделяют внимание звукоизоляции. К такому выводу пришли специалисты направления «Минеральная изоляция» ТЕХНОНИКОЛЬ, проведя исследование потребительских предпочтений во втором полугодии 2022. О том, в каких помещениях чаще требуется защита от шума, какие звуки беспокоят жителей городских квартир больше всего, а также какие конструкции изолируют в первую очередь, читайте в новом исследовании компании.*


Потребность в звукоизоляции чаще всего возникает в спальнях – 71,6% участников исследования ТЕХНОНИКОЛЬ планирует или уже обеспечили звукозащиту этой комнаты. В детской и гостиной это делают почти в два раза реже – 32,7% и 31,8% соответственно. Звукоизоляцией кабинета озабочено меньшее количество респондентов (15,6%), чем кухни (25,6%) и ванной (19,9%), что говорит, скорее, о небольшом количестве квартир с отдельными кабинетами.

При этом больше всего участников опроса хочет избавиться от шума из соседней квартиры (59,2%). Чуть больше половины (50,2%) раздражают звуки от телевизора или другого источника в соседней комнате. Внешний шум (автомагистрали, промышленные предприятия и т.п.) беспокоит 30,8% аудитории. И почти такому же количеству людей (29,9%) мешает жить топот соседей сверху. Природные явления, такие как дождь, град и порывы ветра, вызывают больше дискомфорта у респондентов, чем шум лифта – 22,7% против 18,5%.

Исходя из этого распределяются потребности в звукоизоляции конструкций. Так, смежные с соседями стены изолируют от шума 59,2% жителей, делающих ремонт, межкомнатные перегородки – 49,8%, пол – 35,5%, потолок – 32,2%. Стены, граничащие с вентшахтами, лифтами и другими инженерными коммуникациями, обеспечивают звукозащитой 29,4%.

В каждом из этих случаев защищаться приходится от разного вида шума. Из соседней квартиры или комнаты поступает воздушный шум, который передается по воздуху (громкий разговор, звук телевизор и т.п). Из помещения сверху идет ударный шум. Он возникает при контакте с твердой поверхностью и вызывает ее колебания (удары мяча об пол, топот ног и т.п.). По жестким элементам, из которых состоит здание, распространяется структурный шум (подвид ударного). К нему относятся звуки перфоратора или шум лифта, и они распространяются по всему дому, независимо от нахождения источника.

«Избавляются от этих шумов разными способами. Победить воздушный шум можно с помощью системы из каменной ваты и одного листа гипсокартона: энергия звука будет рассеиваться в волокнистом материале (каменной вате), а звуковая волна – ослабляться в твердом (гипсокартоне). От ударного шума избавляются, изолировав непосредственно его источник. Например, установив систему «плавающего пола» с минеральной изоляцией в квартире, где практикуют подвижные игры с мячом или другими предметами. За счет упругости и волокнистой структуры минвата погасит вибрации, и они не будут передаваться на нижний этаж», ­– прокомментировал Александр Керник, директор по исследованиям и развитию направления «Минеральная изоляция», ТЕХНОНИКОЛЬ.

 

* В опросе принимали участие мужчины и женщины в возрасте 28–55 лет, проживающие в собственной квартире или доме, делавшие ремонт за последний год или планирующие его сделать в ближайшие 6 месяцев.


ИСТОЧНИК: Пресс-служба компании ТЕХНОНИКОЛЬ
ИСТОЧНИК ФОТО: пресс-служба компании ТЕХНОНИКОЛЬ

Подписывайтесь на нас:

Информационное моделирование


03.04.2023 09:00

Процессы, приходящие в окружающем мире, настолько сложны и многогранны, что для их изучения используется метод информационного моделирования. С помощью создания моделей появляется возможность представить реальность в упрощенном виде. Удобнее всего вести ее формирование с помощью компьютера. В результате появляется реальный образ объекта, позволяющий понять основные его свойства и использовать информацию для решения конкретной задачи. Построение и использования моделей ведется практически во всех социальных и естественных науках.


Назначение информационного моделирования

С помощью моделирования ведется познание окружающего мира путем создания заместителей исследуемых объектов, которые получили название моделей существующих прототипов или оригиналов. Примером могут служить имена реальных людей, манекены человеческие фигур, макеты действующих самолетов, парков или мостов. Сюда же можно отнести глобусы или карты.

Все выпускаемые модели не могут полностью отразить характеристики оригинала и только указывают на часть его свойств. Примером является модель автомобиля без двигателя и остальных агрегатов. При этом некоторые объекты сразу могут отражать несколько оригиналов, предоставляя информацию о присутствующих у них свойствах. Мяч можно сравнить с планетой, указывая, что она круглая. Если рассмотреть глобус, то здесь появляется информация о расположении материков.

Наиболее качественной моделью считается та, которая с максимальной полнотой отражает признаки объекта. При этом полностью охарактеризовать свой прототип не может ни одна модель. Однако часто этого и не требуется. При создании модели самолета, которая предназначается для коллекции, главным является воспроизведение его внешнего вида, а не летных характеристик.

При изготовлении модели необходимо заранее знать предъявляемые к ней требования, и какие признаки оригинала она должна отражать. Исходя из этих условий, модели бывают двух видов:

  1. Натурная или материальная. К ним относятся макеты или муляжи, которые являются уменьшенными копиями воспроизводимого объекта. В данном случае идет обычное копирование внешних признаков оригинала. При этом копии могут иметь разные размеры отличные от прототипа. Хорошим примером является модель солнечной системы, которая во много раз меньше реальных параметров объекта.
  2. Информационная. Сюда относится словесное описание, схема, чертеж или формула. В данном случае ведется предоставление набора признаков об объекте с содержанием всей необходимой информации.

Предназначения моделей состоят в следующем:

  1. Представление масштабных будущих проектов. Сюда может относиться план застройки жилого сектора или архитектурные особенности отдельного помещения.
  2. Показ сложнодоступной информации. Это касается макетов в биологическом кабинете.
  3. Проверка работы создаваемых в будущем агрегатов. Модель самолета проверяется в аэродинамической трубе с целью выявления всех недостатков на стадии проектирования.
  4. Для точного прогнозирования. Снимки, полученные из космоса, дают представление о перемещении воздушных масс.
  5. С целью получения необходимой информации. Наглядным примером является места указания движения поездов или автобусов.

Разновидности информационных моделей

Информационные модели отражают свойства объекта в определенной форме. По способу представления они делятся на виды:

  1. Образные. Такие модели несут в себе информацию об объекте с помощью зрительных образов. Это могут быть рисунки или фотографии, расположенные на носителе информации. Классическими примерами являются бумага с нанесенным на нее изображением, фотографии или спутниковые снимки. Образные модели широко используются в учебных заведениях. Здесь они присутствуют в учебниках или как иллюстрации на плакатах
  2. Знаковые. Выглядят в виде формул, текста или написанной на определенном языке программы.
  3. Смешанные. В таких моделях присутствуют как образные, так и знаковые элементы. Сюда относятся географические карты, различные диаграммы или графики.

Информационные модели широко применяются при разработке чертежей для строительных и механических конструкций, а также при формировании электронных схем.

Графические модели

С помощью графического моделирования есть возможность представить объект в виде различного вида изображений. К ним относятся:

  1. Схема. Это графическое изображение объекта, выполненного с помощью условных линий. В результате появляется информация о структуре системы, ее внешнем виде и данные о некоторых характерных признаках. При этом она носит ограниченный характер, поскольку схема не обладает рельефностью. Если речь идет о блок-схемах, то их задача состоит в предоставлении алгоритма определенных действий для решения проблемы.
  2. Карта. Здесь идет описание местности в виде ее моделирования. Карта выглядит как уменьшенное изображение участка поверхности Земли разной по размеру территории. В результате появляется наглядная информация о рельефе местности, расположении населенных пунктов, проложенных автомагистралях и расстояний между объектами.
  3. Чертеж. Это нанесенный на бумагу в уменьшенном виде объект. Особенность проекта заключается в том, что он ведется методом проецирования детали в определенном масштабе. Для предоставления более полной информации в чертеже присутствуют размерные линии с нанесенными числами и текст. Их созданием занимаются проектировщики, которые работают в конструкторских бюро.
  4. График. Сюда включаются диаграммы, содержащие статистические данные об исследуемом явлении. График представляет собой разного вида линии, отражающие тенденцию развития процессов, их рост или падение.

На бумагу можно наносить объемные изображения узлов и деталей. Это значительно облегчает восприятие модели предмета.

Математические модели

Любые процессы можно описать с помощью математической символики. Сюда относятся разной сложности уравнения или любые типы неравенств. Существенную помощь в создании математических моделей оказало появление ЭВМ. С использованием электронно-вычислительной техники появилась возможность не только убыстрить расчеты, но и значительно их углубить. Это дало мощный толчок для формирования таких видов моделей, которых раньше невозможно было создать на практике.

Компьютерное математическое моделирование проводится в 7 этапов:

  1. Первый. Определяются цели моделирования, и ведется понимание структуры будущего объекта, а также взаимодействия его с окружающей средой. Определяется способ управления процессом на основании существующих целей и прогнозирование будущих последствий такого воздействия.
  2. Второй. Определяется степень важности входных параметров, которые разделяются по рангам.
  3. Третий. Ведется непосредственно разработка математической модели на основании имеющейся абстрактной формулировки.
  4. Четвертый. Подыскивается наиболее удобный способ исследования построенной модели. Оптимальным вариантом является численный метод, который хорошо поддается программированию.
  5. Пятый. Отлаживается разработанная программа.
  6. Шестой. Готовая программа тестируется на основании заранее известного результата. Если проверка проходит успешно, программа запускается в работу.
  7. Седьмой. Начинается непосредственно эксперимент и если точность полученных результатов не соответствует ожидаемым реальным процессам, модель отправляется на доработку.

Основным преимуществом математических моделей является универсальность, поскольку их можно использовать на разных явлениях, а иногда даже на целом классе.

Моделирование глобальных процессов

Во время моделирования процессов, проходящих в отдельно взятых науках, решаются локальные задачи. При этом перед человечеством стоит цель получения информации о ближайшем своем будущем. Здесь рассматривается не политическая и экономическая ситуация в отдельных государствах, а развитие человечества в целом.

Такая необходимость заключается в том, что из-за непродолжительности жизни человека, изменения, которые наблюдаются в мире, малозаметны. На развитие человечества и планеты влияет огромное количество проходящих процессов, которые взаимосвязаны между собой, но конечные результаты их деятельности предсказать невозможно. Человеческому уму не под силу решить такую проблему и только с помощью компьютерного моделирования можно спрогнозировать итог взаимодействия глобальных факторов на ближайший период и сделать относительно верный прогноз.

Возможные трудности

Причиной нестабильности могут стать следующие факторы:

  1. Увеличение численности населения. По статистике количество человек на Земле удваивается через каждые 40 лет. Это приводит к истощению источников, поддерживающих существование населения.
  2. Уменьшение природных ресурсов. Связано это с высокими темпами развития промышленного производства. К ним относятся полезные ископаемые и источники чистой воды.
  3. Повышенный процент в воздухе соединений углерода диоксида. Происходит это из-за уменьшения количества лесов на планете, поскольку их вырубка ведется в неконтролируемом порядке.
  4. Глобальное потепление на Земле. Причиной является неправильное хозяйствование человечества.

Трудности ведения отслеживания проблем состоят в том, что все происходящие на Земле процессы необходимо рассматривать в комплексе. С одной стороны рост производства относится к положительному фактору. Однако он за собой тянет негативные последствия в виде загрязнению почвы и атмосферы, а также повышенному расходу невозобновляемых энергоресурсов. Увеличение численности людей позволяет развивать нашу планету, но это влечёт за собой ухудшение состояния атмосферы.

Чтобы хорошо понимать и прогнозировать будущее развитие человечества, возникает потребность в моделировании всех процессов.

Соблюдение правил

В результате моделирования появляется возможность избежать будущих катастроф. Для этого необходимо соблюдать следующие правила:

  1. В мире существуют возобновляемые ресурсы, к которым относятся вода, лес или рыба. Необходимо их расходовать так, чтобы они успевали восстанавливаться.
  2. К невозобновляемым ресурсам относятся различные виды руд, нефть или уголь. В процессе их потребления необходимо соблюдать меру, чтобы постепенно осуществлялся переход на потребление возобновляемых ресурсов, таких как солнечная энергия, или ветер. При организации научного подхода после исчезновения невозобновляемых видов природных источников произойдет плавный переход к использованию энергии от новых ресурсов.
  3. Загрязнение природы должно вестись такими темпами, чтобы она успевала очищаться. С этой целью на промышленных предприятиях обязательно требуется устанавливать очистительное оборудование.

Для охвата всех глобальных процессов ведется их моделирование, которое известно под названием WORLD. Полученные данные дают возможность наметить пути развития человечества для достижения благополучия и стабильности.

Современное строительное моделирование

Проектирование строительных объектов осуществляется с помощью цифрового моделирования. Обеспечивается это применением технологии BIM. Ее эффективность дает возможность существенно сэкономить финансовые и временные затраты. Такая технология позволяет создавать модели для ведения строительства объектов любой сложности, к которым относятся тоннели, мосты, высотные дома и скоростные трассы. BIM напоминает 3D моделирование с расширенной базой данных.

При создании модели 3D-объекта используются компоненты, загруженные в электронную базу. Сюда включаются стоимость используемых материалов, их физико-механические характеристики, данные инженерных изысканий. В том случае, когда параметры изменяются, программой в схему автоматически вводятся поправки.

С помощью моделирования BIM обеспечивается возможность архитекторам, проектировщикам, дизайнерам, коллективное ведение работы. Все вносимое ими данные тут же распределяются программой в нужные ячейки. Создание такой модели выражается в следующих преимуществах:

  • комплексный расчет всех характеристик строительного объекта;
  • устранение ошибок, которые возможны на стадии проектирования;
  • выявление отклонений в заложенной технологии при ведении строительных работ;
  • полная синхронизация всего процесса;

Любая задумка заказчика перед началом возведения объекта за счет использования системы моделирования предварительно просматриваются на экране. Это позволяет устранить все недопонимания между участниками проекта еще на стадии его разработки.

Функционирование модели BIM осуществляется на всех этапах:

  1. Проектирование. Сначала создается непосредственно 3D-модель. Это все подробные чертежи, спецификации и расчеты. Затем данные заносятся в программу, и после обработки формируется список предстоящих работ. Кроме того, на этой стадии с помощью компьютера проект дополняется такими данными как устройство подъездных путей, площадок для разгрузки и хранении, а также обслуживание спецтехники.
  2. Строительство. Наличия созданной 3D модели позволяет на этом этапе вести полный контроль возведения объекта. В случае выявления отклонений происходит их фиксации и корректировка. Такая работа ведется всеми участниками: заказчиком, застройщиком, инвестором и контролирующими органами.
  3. Эксплуатация. Технологии BIM даже после сдачи строительного объекта обладают возможностями контроля состояния строения в последующий период. Обеспечивается это наличием датчиков, подающих необходимую информацию на компьютерное оборудование.

Использование моделирования BIM позволяет сэкономить на постройке объекта до 20% средств. При этом время на его возведение сокращается на 12%, что придает проекту повышенную привлекательность.

Информационное моделирование относится к процедуре формирования и построения моделей различного формата, которые представляют собой хранилища, легко воспринимаемые человеком. Разрабатываются они абсолютно для всех сфер жизни и дают возможность получить данные о наиболее слабых сторонах объекта или текущего процесса, что позволяет принять меры для исправления ситуации.


ИСТОЧНИК ФОТО: ASNinfo

Подписывайтесь на нас: