Сила света и культуры


17.04.2025 09:00

В России наблюдается тенденция увеличения использования светопрозрачных конструкций при строительстве современных объектов культуры и частично — при реставрации исторических. Стекло становится важным элементом визуального пространства здания и его уникальности.


Современные культурные учреждения, такие как театры, музеи и выставочные залы, все чаще проектируются с акцентом на светопрозрачные фасады. Это позволяет не только создать эффект открытости и доступности, но и максимально использовать естественное освещение, что положительно сказывается на восприятии пространства. Стекло в архитектуре новых объектов культуры становится не просто строительным материалом, а важным инструментом для создания уникальной атмосферы и взаимодействия между внутренним пространством и окружающей средой.

Расширяя пространство

По словам архитектора и генерального директора «АМЦ-ПРОЕКТ» Сергея Цыцина, в целом доля стекла в архитектуре зданий увеличивается с середины XIX века. Однако если ориентироваться на нашу культурную идентичность, то, безусловно, основа здания остается в первую очередь в его стенах и архитектурных формах. На многих современных культурных объектах действительно наблюдается рост использования стеклянных и светопрозрачных конструкций. С развитием новейших технологий значительно повысилось качество витражей, стеклопакетов и самого стекла. Это, в свою очередь, открывает новые горизонты для возведения сложных архитектурных проектов.

«Стекло может сыграть решающую роль в создании связи между интерьером и экстерьером здания, расширяя пространство и наполняя его светом. Человек, находясь внутри здания, может наблюдать за окружающим миром, как будто за картиной, где красивые виды раскрываются перед ним через стеклянные стены. Таким образом, правильное использование стекла в архитектуре объектов культуры приносит не только эстетическое удовлетворение, но и функциональные преимущества. Ландшафт прилегающей территории к таким объектам также играет важную роль восприятия здания», — отмечает эксперт.

Есть сложности, добавляет Сергей Цыцин, с усилением доли стекла в проектах реставрации объектов культурного наследия. С одной стороны, это правильно, потому что мы не должны каким-то образом потерять то, что имеем в нашем историческом наследии, и они находятся под защитой государства. С другой стороны, конечно, в разумном виде приспособления объектов под современные нужды требуют определенных решений. И в данном случае стекло — большой помощник. Например, в качестве функциональных переходов между историческими зданиями может быть выполнен какой-то стеклянный вестибюль. Это решение очень освежает восприятие объекта и может выглядеть очень симпатично.

Проекты объектов культуры с обширным остеклением, рассказывает директор департамента продвижения продукта, маркетинга и экспорта АО «РСК» Алена Красюкова, создаются для визуальной открытости, естественного освещения и гармоничной интеграции в городской ландшафт. Стекло здесь выполняет не только эстетическую, но и функциональную роль: улучшает энергоэффективность и безопасность, а также может служить медиаповерхностью для трансляции информации или рекламы. Количество таких объектов растет: музеи, театры и выставочные пространства все чаще проектируются с панорамным остеклением или эксклюзивными решениями со стеклом. Например, в новом здании Третьяковской галереи применена цифровая печать керамическими чернилами, благодаря которой на стекле воссозданы изображения знаменитых картин. Используется триплекс: на первое прозрачное стекло наносится черное изображение, а на второе, более темное, — белое. Другой пример — Музей Мирового океана, где каждый стеклопакет — это уникальная деталь сложной фасадной композиции, требующей высокой точности изготовления и монтажа. Изображение нанесено атмосферостойкими красками, а второе стекло выполнено в виде эмалита с индивидуально подобранным оттенком.

«В реставрации исторических зданий изделия из стекла используются как для создания современных архитектурных элементов — надстроек, атриумов и зенитных фонарей, — так и для повышения энергоэффективности, сохраняя при этом исторический облик. Среди наших проектов — высокоселективные стеклопакеты для «Новой Голландии», обеспечивающие необходимый уровень светопропускания, улучшенные характеристики энергосбережения и придающие объекту современный вид. Общество, как правило, положительно воспринимает такие обновления, если удается соблюсти баланс между историческим наследием и инновациями. В таких проектах используются самые передовые технологии. Основные тренды — динамическое стекло, сенсорные стеклопакеты, экстраформатные стеклопакеты, медиафасады и инновационные решения в цифровой печати», — констатирует Алена Красюкова.

Универсальный материал

Главным драйвером при выборе остекления сегодня становится эстетика — особенно в проектах культурных сооружений, считает Александр Четвериков, коммерческий директор Larta Glass (один из ведущих производителей стекла). Архитекторы все чаще рассматривают стекло не просто как строительный материал, а как выразительный художественный инструмент. Оно формирует визуальные образы, оживляет здание, встраивает его в природную и культурную среды. Яркий пример — новый Театр им. Камала в Казани. Его стеклянный фасад, вдохновленный «ледяными цветами» озера Кабан, не просто отражает воду и небо, но буквально вплетается в ландшафт, создавая ощущение легкости и парения.

«Культурных объектов с высокой долей остекления становится заметно больше. Архитектура стремится к прозрачности — как в прямом, так и в метафорическом смысле. Например, новое здание Третьяковской галереи на Кадашевской набережной выглядит особенно выразительно благодаря стеклянным витражам с изображениями известных полотен. Здесь стекло стало носителем визуального и культурного кода. Растет и число отреставрированных зданий, где стекло помогает переосмыслить историческое наследие. Так, кинотеатр “Целинный” в Алматы получил вторую жизнь — сохраненный дух модернизма дополнен актуальными технологиями. Такие обновления общество воспринимает позитивно, особенно когда в основе — уважение к оригиналу. Важно и то, что культурные объекты — это всегда территория архитектурного творчества. Каждый проект требует индивидуального подхода к остеклению», — подчеркивает Александр Четвериков.

По словам архитектора и креативного директора Генпро Дмитрия Сухова, объекты культуры являются, как правило, не только зданиями со сложным функциональным наполнением, но должны быть узнаваемыми, яркими или акцентными. Стекло в таких объектах становится как частью ограждающей конструкции, так и важной частью концепции и философии проекта. Стекло универсально во многом: оно может пропускать солнечный свет, а может ограничивать, может позволять зрителю наблюдать, а может ограничивать просмотр и физический доступ. Эти особенности открывают почти безграничные возможности использования остекления в архитектуре зданий и сооружений культуры.

Из-за того, что основным заказчиком зданий такого типа, продолжает Дмитрий Сухов, является государство, ясно прочитывается тренд на уникальный внешний вид при сдержанном бюджете. В принципе, для архитекторов такие факторы не являются чем-то новым. Просто создается меньше таких зданий с контекстуальной архитектурой, больше «иконических». «Из технологических ограничений можно выделить те, что связаны прежде всего с противопожарной безопасностью: огнестойкость, противодымная защита. Также необходимо учитывать большой вес стекла, его высокую стоимость. В технологических особенностях, связанных с геометрией стекла, его размерами, химическим составом, сейчас производители шагнули вперед, предоставляя архитекторам и заказчикам возможности для творческой реализации».

Источник: Сергей Елагин

Адаптировать замысел

Стоит отметить, что в множестве современных объектов культуры светопрозрачные материалы задействуются в сочетании с различными фасадными конструкциями, также играющими важную роль в восприятии здания. В последнее время, рассказывает коммерческий директор Группы компаний Doksal Артур Туктаров, все чаще и чаще при строительстве и реставрации объектов культуры на смену классическим конструкциям СФТК и лепнине приходят современные высокофункциональные конструкции навесного вентилируемого фасада. Яркими примерами таких архитектурных решений являются новый Театр им. Камала в Казани и музейные и театральные образовательные комплексы в Калининграде и Кемерове.

«Безусловно, к таким конструкциям применяются требования высокой надежности и безопасности. Так как речь идет в первую очередь о металле, важную роль играет коррозионная стойкость. В рамках реализации таких проектов очень важен диалог между архитектором и проектировщиком. Зачастую задумку архитектора приходится адаптировать под нагрузки и воздействия природного и техногенного характера и требования нормативных и законодательных актов, поэтому важно найти компромисс», — отмечает он.

Если говорить об особых требованиях к фасадным системам объектов культуры, продолжает тему еще один производитель вентилируемых навесных фасадов — председатель совета директоров ГК «ДИАТ» Евгений Цыкановский, по сути, они такие же, как и у всех заказчиков, которые по-настоящему заботятся о своих зданиях. Это безопасность, долговечность и максимальный безремонтный срок эксплуатации. Каких-то исключительных нет. Но все требования, которые предъявляются, мы выполняем на всех объектах без исключения: мы не разделяем их на культурные или какие-то другие. «Повторить исторические фасады точь-в-точь современными системами точно нельзя. А вот сделать что-то на тему — да, можно. Тут важно, чтобы архитектор понимал возможности технологий. А мы как раз специализируемся на нестандартных конструкциях — умеем их делать и правильно оформлять».

Эксперт направления продуктовых инноваций компании «Северсталь» Алексей Староверов отмечает, что при строительстве и реставрации объектов культуры используется широкий спектр фасадных конструкций, сочетающих в себе инновационные технологии, эстетическую привлекательность и функциональность. Параметрическая архитектура демонстрирует использование нетрадиционных материалов, таких как титановые панели, для достижения уникального визуального эффекта. «Одним из наиболее заметных трендов является применение атмосферостойкой стали, включая Forcera, разработанной компанией “Северсталь”. Этот материал привлекает архитекторов и строителей благодаря своей способности образовывать патину, которая защищает от коррозии и придает фасадам уникальный “живой вид”. Атмосферная сталь используется для изготовления различных архитектурных элементов, таких как фасадные панели, ламели, другие декоративные детали, в том числе при строительстве культурных объектов», — подчеркивает специалист.


АВТОР: Виктор Краснов
ИСТОЧНИК ФОТО: Дмитрий Чебаненко/СПИЧ

Подписывайтесь на нас:

Почти 60% городских жителей хотят избавиться от шума из соседних квартир


07.04.2023 09:35

Все больше людей при ремонте уделяют внимание звукоизоляции. К такому выводу пришли специалисты направления «Минеральная изоляция» ТЕХНОНИКОЛЬ, проведя исследование потребительских предпочтений во втором полугодии 2022. О том, в каких помещениях чаще требуется защита от шума, какие звуки беспокоят жителей городских квартир больше всего, а также какие конструкции изолируют в первую очередь, читайте в новом исследовании компании.*


Потребность в звукоизоляции чаще всего возникает в спальнях – 71,6% участников исследования ТЕХНОНИКОЛЬ планирует или уже обеспечили звукозащиту этой комнаты. В детской и гостиной это делают почти в два раза реже – 32,7% и 31,8% соответственно. Звукоизоляцией кабинета озабочено меньшее количество респондентов (15,6%), чем кухни (25,6%) и ванной (19,9%), что говорит, скорее, о небольшом количестве квартир с отдельными кабинетами.

При этом больше всего участников опроса хочет избавиться от шума из соседней квартиры (59,2%). Чуть больше половины (50,2%) раздражают звуки от телевизора или другого источника в соседней комнате. Внешний шум (автомагистрали, промышленные предприятия и т.п.) беспокоит 30,8% аудитории. И почти такому же количеству людей (29,9%) мешает жить топот соседей сверху. Природные явления, такие как дождь, град и порывы ветра, вызывают больше дискомфорта у респондентов, чем шум лифта – 22,7% против 18,5%.

Исходя из этого распределяются потребности в звукоизоляции конструкций. Так, смежные с соседями стены изолируют от шума 59,2% жителей, делающих ремонт, межкомнатные перегородки – 49,8%, пол – 35,5%, потолок – 32,2%. Стены, граничащие с вентшахтами, лифтами и другими инженерными коммуникациями, обеспечивают звукозащитой 29,4%.

В каждом из этих случаев защищаться приходится от разного вида шума. Из соседней квартиры или комнаты поступает воздушный шум, который передается по воздуху (громкий разговор, звук телевизор и т.п). Из помещения сверху идет ударный шум. Он возникает при контакте с твердой поверхностью и вызывает ее колебания (удары мяча об пол, топот ног и т.п.). По жестким элементам, из которых состоит здание, распространяется структурный шум (подвид ударного). К нему относятся звуки перфоратора или шум лифта, и они распространяются по всему дому, независимо от нахождения источника.

«Избавляются от этих шумов разными способами. Победить воздушный шум можно с помощью системы из каменной ваты и одного листа гипсокартона: энергия звука будет рассеиваться в волокнистом материале (каменной вате), а звуковая волна – ослабляться в твердом (гипсокартоне). От ударного шума избавляются, изолировав непосредственно его источник. Например, установив систему «плавающего пола» с минеральной изоляцией в квартире, где практикуют подвижные игры с мячом или другими предметами. За счет упругости и волокнистой структуры минвата погасит вибрации, и они не будут передаваться на нижний этаж», ­– прокомментировал Александр Керник, директор по исследованиям и развитию направления «Минеральная изоляция», ТЕХНОНИКОЛЬ.

 

* В опросе принимали участие мужчины и женщины в возрасте 28–55 лет, проживающие в собственной квартире или доме, делавшие ремонт за последний год или планирующие его сделать в ближайшие 6 месяцев.


ИСТОЧНИК: Пресс-служба компании ТЕХНОНИКОЛЬ
ИСТОЧНИК ФОТО: пресс-служба компании ТЕХНОНИКОЛЬ

Подписывайтесь на нас:

Информационное моделирование


03.04.2023 09:00

Процессы, приходящие в окружающем мире, настолько сложны и многогранны, что для их изучения используется метод информационного моделирования. С помощью создания моделей появляется возможность представить реальность в упрощенном виде. Удобнее всего вести ее формирование с помощью компьютера. В результате появляется реальный образ объекта, позволяющий понять основные его свойства и использовать информацию для решения конкретной задачи. Построение и использования моделей ведется практически во всех социальных и естественных науках.


Назначение информационного моделирования

С помощью моделирования ведется познание окружающего мира путем создания заместителей исследуемых объектов, которые получили название моделей существующих прототипов или оригиналов. Примером могут служить имена реальных людей, манекены человеческие фигур, макеты действующих самолетов, парков или мостов. Сюда же можно отнести глобусы или карты.

Все выпускаемые модели не могут полностью отразить характеристики оригинала и только указывают на часть его свойств. Примером является модель автомобиля без двигателя и остальных агрегатов. При этом некоторые объекты сразу могут отражать несколько оригиналов, предоставляя информацию о присутствующих у них свойствах. Мяч можно сравнить с планетой, указывая, что она круглая. Если рассмотреть глобус, то здесь появляется информация о расположении материков.

Наиболее качественной моделью считается та, которая с максимальной полнотой отражает признаки объекта. При этом полностью охарактеризовать свой прототип не может ни одна модель. Однако часто этого и не требуется. При создании модели самолета, которая предназначается для коллекции, главным является воспроизведение его внешнего вида, а не летных характеристик.

При изготовлении модели необходимо заранее знать предъявляемые к ней требования, и какие признаки оригинала она должна отражать. Исходя из этих условий, модели бывают двух видов:

  1. Натурная или материальная. К ним относятся макеты или муляжи, которые являются уменьшенными копиями воспроизводимого объекта. В данном случае идет обычное копирование внешних признаков оригинала. При этом копии могут иметь разные размеры отличные от прототипа. Хорошим примером является модель солнечной системы, которая во много раз меньше реальных параметров объекта.
  2. Информационная. Сюда относится словесное описание, схема, чертеж или формула. В данном случае ведется предоставление набора признаков об объекте с содержанием всей необходимой информации.

Предназначения моделей состоят в следующем:

  1. Представление масштабных будущих проектов. Сюда может относиться план застройки жилого сектора или архитектурные особенности отдельного помещения.
  2. Показ сложнодоступной информации. Это касается макетов в биологическом кабинете.
  3. Проверка работы создаваемых в будущем агрегатов. Модель самолета проверяется в аэродинамической трубе с целью выявления всех недостатков на стадии проектирования.
  4. Для точного прогнозирования. Снимки, полученные из космоса, дают представление о перемещении воздушных масс.
  5. С целью получения необходимой информации. Наглядным примером является места указания движения поездов или автобусов.

Разновидности информационных моделей

Информационные модели отражают свойства объекта в определенной форме. По способу представления они делятся на виды:

  1. Образные. Такие модели несут в себе информацию об объекте с помощью зрительных образов. Это могут быть рисунки или фотографии, расположенные на носителе информации. Классическими примерами являются бумага с нанесенным на нее изображением, фотографии или спутниковые снимки. Образные модели широко используются в учебных заведениях. Здесь они присутствуют в учебниках или как иллюстрации на плакатах
  2. Знаковые. Выглядят в виде формул, текста или написанной на определенном языке программы.
  3. Смешанные. В таких моделях присутствуют как образные, так и знаковые элементы. Сюда относятся географические карты, различные диаграммы или графики.

Информационные модели широко применяются при разработке чертежей для строительных и механических конструкций, а также при формировании электронных схем.

Графические модели

С помощью графического моделирования есть возможность представить объект в виде различного вида изображений. К ним относятся:

  1. Схема. Это графическое изображение объекта, выполненного с помощью условных линий. В результате появляется информация о структуре системы, ее внешнем виде и данные о некоторых характерных признаках. При этом она носит ограниченный характер, поскольку схема не обладает рельефностью. Если речь идет о блок-схемах, то их задача состоит в предоставлении алгоритма определенных действий для решения проблемы.
  2. Карта. Здесь идет описание местности в виде ее моделирования. Карта выглядит как уменьшенное изображение участка поверхности Земли разной по размеру территории. В результате появляется наглядная информация о рельефе местности, расположении населенных пунктов, проложенных автомагистралях и расстояний между объектами.
  3. Чертеж. Это нанесенный на бумагу в уменьшенном виде объект. Особенность проекта заключается в том, что он ведется методом проецирования детали в определенном масштабе. Для предоставления более полной информации в чертеже присутствуют размерные линии с нанесенными числами и текст. Их созданием занимаются проектировщики, которые работают в конструкторских бюро.
  4. График. Сюда включаются диаграммы, содержащие статистические данные об исследуемом явлении. График представляет собой разного вида линии, отражающие тенденцию развития процессов, их рост или падение.

На бумагу можно наносить объемные изображения узлов и деталей. Это значительно облегчает восприятие модели предмета.

Математические модели

Любые процессы можно описать с помощью математической символики. Сюда относятся разной сложности уравнения или любые типы неравенств. Существенную помощь в создании математических моделей оказало появление ЭВМ. С использованием электронно-вычислительной техники появилась возможность не только убыстрить расчеты, но и значительно их углубить. Это дало мощный толчок для формирования таких видов моделей, которых раньше невозможно было создать на практике.

Компьютерное математическое моделирование проводится в 7 этапов:

  1. Первый. Определяются цели моделирования, и ведется понимание структуры будущего объекта, а также взаимодействия его с окружающей средой. Определяется способ управления процессом на основании существующих целей и прогнозирование будущих последствий такого воздействия.
  2. Второй. Определяется степень важности входных параметров, которые разделяются по рангам.
  3. Третий. Ведется непосредственно разработка математической модели на основании имеющейся абстрактной формулировки.
  4. Четвертый. Подыскивается наиболее удобный способ исследования построенной модели. Оптимальным вариантом является численный метод, который хорошо поддается программированию.
  5. Пятый. Отлаживается разработанная программа.
  6. Шестой. Готовая программа тестируется на основании заранее известного результата. Если проверка проходит успешно, программа запускается в работу.
  7. Седьмой. Начинается непосредственно эксперимент и если точность полученных результатов не соответствует ожидаемым реальным процессам, модель отправляется на доработку.

Основным преимуществом математических моделей является универсальность, поскольку их можно использовать на разных явлениях, а иногда даже на целом классе.

Моделирование глобальных процессов

Во время моделирования процессов, проходящих в отдельно взятых науках, решаются локальные задачи. При этом перед человечеством стоит цель получения информации о ближайшем своем будущем. Здесь рассматривается не политическая и экономическая ситуация в отдельных государствах, а развитие человечества в целом.

Такая необходимость заключается в том, что из-за непродолжительности жизни человека, изменения, которые наблюдаются в мире, малозаметны. На развитие человечества и планеты влияет огромное количество проходящих процессов, которые взаимосвязаны между собой, но конечные результаты их деятельности предсказать невозможно. Человеческому уму не под силу решить такую проблему и только с помощью компьютерного моделирования можно спрогнозировать итог взаимодействия глобальных факторов на ближайший период и сделать относительно верный прогноз.

Возможные трудности

Причиной нестабильности могут стать следующие факторы:

  1. Увеличение численности населения. По статистике количество человек на Земле удваивается через каждые 40 лет. Это приводит к истощению источников, поддерживающих существование населения.
  2. Уменьшение природных ресурсов. Связано это с высокими темпами развития промышленного производства. К ним относятся полезные ископаемые и источники чистой воды.
  3. Повышенный процент в воздухе соединений углерода диоксида. Происходит это из-за уменьшения количества лесов на планете, поскольку их вырубка ведется в неконтролируемом порядке.
  4. Глобальное потепление на Земле. Причиной является неправильное хозяйствование человечества.

Трудности ведения отслеживания проблем состоят в том, что все происходящие на Земле процессы необходимо рассматривать в комплексе. С одной стороны рост производства относится к положительному фактору. Однако он за собой тянет негативные последствия в виде загрязнению почвы и атмосферы, а также повышенному расходу невозобновляемых энергоресурсов. Увеличение численности людей позволяет развивать нашу планету, но это влечёт за собой ухудшение состояния атмосферы.

Чтобы хорошо понимать и прогнозировать будущее развитие человечества, возникает потребность в моделировании всех процессов.

Соблюдение правил

В результате моделирования появляется возможность избежать будущих катастроф. Для этого необходимо соблюдать следующие правила:

  1. В мире существуют возобновляемые ресурсы, к которым относятся вода, лес или рыба. Необходимо их расходовать так, чтобы они успевали восстанавливаться.
  2. К невозобновляемым ресурсам относятся различные виды руд, нефть или уголь. В процессе их потребления необходимо соблюдать меру, чтобы постепенно осуществлялся переход на потребление возобновляемых ресурсов, таких как солнечная энергия, или ветер. При организации научного подхода после исчезновения невозобновляемых видов природных источников произойдет плавный переход к использованию энергии от новых ресурсов.
  3. Загрязнение природы должно вестись такими темпами, чтобы она успевала очищаться. С этой целью на промышленных предприятиях обязательно требуется устанавливать очистительное оборудование.

Для охвата всех глобальных процессов ведется их моделирование, которое известно под названием WORLD. Полученные данные дают возможность наметить пути развития человечества для достижения благополучия и стабильности.

Современное строительное моделирование

Проектирование строительных объектов осуществляется с помощью цифрового моделирования. Обеспечивается это применением технологии BIM. Ее эффективность дает возможность существенно сэкономить финансовые и временные затраты. Такая технология позволяет создавать модели для ведения строительства объектов любой сложности, к которым относятся тоннели, мосты, высотные дома и скоростные трассы. BIM напоминает 3D моделирование с расширенной базой данных.

При создании модели 3D-объекта используются компоненты, загруженные в электронную базу. Сюда включаются стоимость используемых материалов, их физико-механические характеристики, данные инженерных изысканий. В том случае, когда параметры изменяются, программой в схему автоматически вводятся поправки.

С помощью моделирования BIM обеспечивается возможность архитекторам, проектировщикам, дизайнерам, коллективное ведение работы. Все вносимое ими данные тут же распределяются программой в нужные ячейки. Создание такой модели выражается в следующих преимуществах:

  • комплексный расчет всех характеристик строительного объекта;
  • устранение ошибок, которые возможны на стадии проектирования;
  • выявление отклонений в заложенной технологии при ведении строительных работ;
  • полная синхронизация всего процесса;

Любая задумка заказчика перед началом возведения объекта за счет использования системы моделирования предварительно просматриваются на экране. Это позволяет устранить все недопонимания между участниками проекта еще на стадии его разработки.

Функционирование модели BIM осуществляется на всех этапах:

  1. Проектирование. Сначала создается непосредственно 3D-модель. Это все подробные чертежи, спецификации и расчеты. Затем данные заносятся в программу, и после обработки формируется список предстоящих работ. Кроме того, на этой стадии с помощью компьютера проект дополняется такими данными как устройство подъездных путей, площадок для разгрузки и хранении, а также обслуживание спецтехники.
  2. Строительство. Наличия созданной 3D модели позволяет на этом этапе вести полный контроль возведения объекта. В случае выявления отклонений происходит их фиксации и корректировка. Такая работа ведется всеми участниками: заказчиком, застройщиком, инвестором и контролирующими органами.
  3. Эксплуатация. Технологии BIM даже после сдачи строительного объекта обладают возможностями контроля состояния строения в последующий период. Обеспечивается это наличием датчиков, подающих необходимую информацию на компьютерное оборудование.

Использование моделирования BIM позволяет сэкономить на постройке объекта до 20% средств. При этом время на его возведение сокращается на 12%, что придает проекту повышенную привлекательность.

Информационное моделирование относится к процедуре формирования и построения моделей различного формата, которые представляют собой хранилища, легко воспринимаемые человеком. Разрабатываются они абсолютно для всех сфер жизни и дают возможность получить данные о наиболее слабых сторонах объекта или текущего процесса, что позволяет принять меры для исправления ситуации.


ИСТОЧНИК ФОТО: ASNinfo

Подписывайтесь на нас: