Малоэтажное строительство
Не всем людям нравится жить в больших многоквартирных домах, высота которых может достигать девяти и более этажей. Многие сегодня предпочитают переселиться в малоэтажные здания, которые смогли обрести большую популярность.
Спрос на малоэтажки начал расти еще в конце 2000-х годов. В это время люди стали понимать, что экологически благоприятные кварталы гораздо лучше, чем «муравейники». На популярность малоэтажек также повлияла и пандемия, которая показала, что все время находиться в четырех стенах без возможности выйти на улицу довольно тяжело.
Что представляет собой малоэтажное здание
Из названия уже можно понять, что речь пойдет не про семнадцатиэтажный дом. Малоэтажное здание обычно состоит из максимум четырех этажей и может иметь небольшую придомовую территорию. Какого-то конкретного определения для него не существует.
Организованная малоэтажная застройка включает один или несколько смежных земельных участков, на которых строительством домов занимается один и тот же застройщик. Благодаря этому все здания выполнены в едином архитектурном стиле и имеют практически одинаковое дизайнерское оформление. Сегодня в странах СНГ можно встретить достаточно много микрорайонов, которые состоят из малоэтажных многоквартирных домов, частных домов, таунхаусов.
Разновидности малоэтажных застроек
К малоэтажным домам можно отнести:
- многоквартирные жилые дома (не более 4 этажей, учитывая мансардный);
- дома блокированной застройки;
- дома с приусадебными земельными участками (коттеджи, частные дома и т.д.).
Расскажем подробнее о каждой разновидности.
Многоквартирные дома
В соответствии с правилами, регулирующими градостроительство и размещение городских и сельских поселений, к категории малоэтажных многоквартирных жилых зданий можно отнести дома с не более четырьмя этажами, включая мансардный. Состоять они при этом должны, как минимум, из двух квартир.
Отличительной особенностью многоквартирного жилого дома является наличие общего имущества. К нему можно отнести лестницы, коридоры, чердачные и подвальные помещения, а также земельный участок, на котором находится сама малоэтажка.
Дома блокированной застройки
Это жилые дома, которые в высоту достигают не более трех этажей и имеют отдельные выходы на земельный участок. Они обычно соединены друг с другом. Большинство людей называют такое жилье таунхаус, лейнхаус или дуплекс.
Таунхаусы представляют собой малоэтажные здания, которые состоят из нескольких многоквартирных единиц с отдельными входами. Общего подъезда у них нет.
Если таунхаусы выполнены в одном архитектурном стиле и имеют схожую планировку, то дома в лейнхаусе могут отличаться друг от друга по дизайну, архитектурным решениям и даже по количеству этажей.
Дуплекс можно также назвать таунхаусом, но при этом состоять он будет только из двух отдельных единиц. Если планируется реконструкция одного из зданий блокированной застройки, то владельцу обязательно потребуется согласие владельцев всех домов, находящихся в одной линии.
Индивидуальная жилищная застройка
К ним можно отнести:
- жилые (частные) дома, площадь которых достигает не более 100 кв. м;
- коттеджи, которые занимают площадь от 100 до 500 кв. м;
- усадьбы, занимающие территорию более 500 кв. м.
Все они представляют собой отдельно стоящие дома с прилегающими участками, на которых можно организовать садик или огород. Основные отличия домов друг от друга заключаются в размерах здания и земельного участка, а также в способе использования этого участка.
Существуют еще и другие классификации малоэтажных зданий:
- По месторасположению: городские (с минимальным придомовым участком и обособленным входом), расположенные в пригороде/городской черте (на участке площадью не более 0,15 га), загородные (занимающие участок площадью 15 га и больше).
- По уровню доходов: элитные, среднего/бизнес-класса, эконом-класса.
- По периодичности проживания: для круглогодичного и для сезонного (чаще всего это обычные дачные домики).
- По размерам и наличию земельного участка: с придомовым, с небольшим участком, без земельного участка.
- По количеству этажей: одно-, двух- и трехэтажные.
- По конструктивному решению: из древесины, из панелей, из монолитных материалов, из штучных материалов, комбинированные. Выбранный материал влияет на его долговечность, стоимость, звукоизоляционные и теплотехнические качества дома, а также на эксплуатационные затраты.
- По качеству отделки: без отделки, со стандартной отделкой, с высококачественной отделкой.
- По наличию нежилой площади: с верандой, мансардой подвалом или вообще без нее.
- По наличию дополнительных помещений: с летней кухней, гаражом, сауной и т.д. или вообще без них.
Как мы видим, четкой классификации у малоэтажных знаний практически нет. Однако самая первая из них, что была приведена выше, встречается в различных источниках гораздо чаще.
Как строят малоэтажное здание
Технологии, которые применяются в малоэтажном строительстве, в значительной степени определяются выбором строительных материалов.
Частные дома чаще всего выполнены из кирпича, дерева, газобетонных и пенобетонных блоков.
Кирпичное домостроение
Кирпич — это традиционный строительный материал, который отличатся высокой прочностью и долговечностью, а также надежной защитой от грибка и плесени. Он пожаробезопасен, поэтому владельцы кирпичного дома могут особо не переживать о высокой вероятности образования пожара. Звукоизоляция подобных домов также радует, а теплопотери — минимальны. К сожалению, процесс создания кирпичных зданий весьма трудоемкий и требует высокой квалификации строителей. Сроки строительства также могут быть довольно длинными.
Каркасное домостроение
Благодаря данной технологии построить здание получается довольно быстро и просто. Различают каркасно-панельную и каркасно-щитовую технологию. Первая отличается высокой скоростью сборки. При этом используются как заводские, так и самодельные сэндвич-панели, которые дополнительно фиксируются деревянным каркасом.
Вторая технология занимает немного больше времени, но итоговая стоимость такого дома ниже. Сначала строится каркас, затем он обшивается листами древесного материала. После установки крыши выполняется утепление и обшивка ГВЛ, фанерой или ОСП. В стенах обязательно применяются ветробарьер и пароизоляция.
Строительство из ячеистого бетона
В настоящее время кирпич активно заменяет ячеистый бетон. Данный материал не подвержен усадке, что позволяет сразу после постройки приступать к отделке и заселению. Пористая структура обеспечивает естественную вентиляцию в помещении, создавая комфортный микроклимат.
Газобетонные и пенобетонные блоки обеспечивают отличные теплоизоляционные характеристики, что позволяет снизить затраты на утепление при возведении малоэтажных зданий. Высокая паропроницаемость предотвращает появление плесени и способствует формированию комфортного микроклимата внутри помещений. Газобетон, как и кирпич, характеризуется высокой огнестойкостью, что гарантирует конструкции безопасность во время пожара. Размеры блоков позволяют упростить процесс строительства несущих и ограждающих элементов, а также ускорить его. При возведении двухэтажных зданий для усиления прочности стен применяется каркас.
К сожалению, высокая пористость блоков увеличивает гигроскопичность, поэтому стены дома придется обязательно отделать водоотталкивающим материалом. Впитывая влагу, газобетон и пенобетон теряют свои теплоизоляционные качества. Также у ячеистого бетона низкая прочность на сдвиг.
Строительство из бруса
Дерево — это еще один классический материал, используемый для строительства домов. Однако с ним стоит быть аккуратнее, поскольку со временем он начинает быстро портиться без дополнительной защиты. Плесень и грибок, а также гниение бревен будет постоянно преследовать хозяина дома, если он вовремя не позаботиться о способах сохранности древесины в целости и сохранности. При создании домов из дерева также очень важно подбирать только качественные материалы, поскольку материалы низкого качества могут быстро деформироваться и трескаться.
В настоящее время для строительства небольших домов часто применяют профилированный и клееный брус. Подобный материал обладает отличными теплоизоляционными свойствами, позволяет получить привлекательные внешне стены, предполагает использование простого фундамента, а также создает внутри помещения комфортный микроклимат. Постройки из бруса являются экологически чистыми.
Для блокированных домов больше подходит блочно-каменная или монолитная технология. Многоквартирные малоэтажные здания строятся преимущественно по монолитной технологии. Как и в случае с многоэтажным домом, сначала создается каркас, а потом уже его заливают бетоном.
Иногда для создания домов подобного рода используют модульные конструкции, которые просто соединяются между собой. Однако применить их можно не во всех случаях.
Кому подойдет проживание в малоэтажном доме
Малоэтажный дом с несколькими квартирами станет отличным вариантом для тех, кто:
- хочет уехать подальше от городской суеты, но при этом пока не хочет (или не может) иметь частный дом или коттедж;
- имеет ограниченный бюджет, но хочет приобрести собственную квартиру (квартира в малоэтажном доме – это отличный вариант для молодых семей, которые имеют детей или только планируют завести ребенка);
- кто работает «на удаленке».
Квартиры в многоэтажных домах также подойдут пенсионерам, которым не требуется постоянно ездить в город, и которые хотят иметь небольшой сад или огород.
Тренды в малоэтажном строительстве
Со временем могут меняться не только модные тренды. В строительстве также происходят определенные изменения. В последнее время во время проектирования и строительства малоэтажных зданий наблюдается следующее:
- Применение исключительно современных технологий и надежных материалов. Это делается для того, чтобы малоэтажные здания долгое время могли сохранять свой первоначальный внешний вид, а также обладать устойчивостью к разного рода воздействиям, например, к сильному ветру.
- Необычные дизайнерские решения. Архитекторы и инженеры при проектировании стремятся создать более привлекательные здания, чтобы в них можно было жить максимально комфортно. За счет продуманного подхода повышается не только функциональность домов, но еще и улучшается их внешний вид.
- Увеличенная площадь остекления. На оконные системы делается большой упор, поскольку за их счет здание начинает выглядеть более привлекательно и богато. К тому же, внутрь попадает больше естественного света.
- Плоская крыша. За счет нее появляется возможность использования верхнего пространства для дополнительных нужд. К тому же, плоская крыша обходится по стоимости гораздо дешевле, чем скатная.
- Энергоэффективность. За этот аспект отвечает хорошо продуманное проектирование.
- Низкий цоколь здания. Он не только защищает от несанкционированного доступа, но еще и предоставляет архитекторам больше возможностей для креативных решений.
- Минимум отделки. Подобное решение позволяет снизить общую стоимость здания.
- Интеллектуальные системы. За сигнализацию, освещение, отопление и систему безопасности в таких домах часто может отвечать «умный дом». С помощью голосовых помощников и мобильных приложений возможно удаленное управление всеми системами в доме.
Малоэтажные здания также наносят меньше вреда окружающей среде, поскольку многие из них создаются преимущественно из экологически чистых материалов.
Преимущества и недостатки малоэтажного жилья
У каждого жилья имеются свои плюсы и минусы, которые обязательно необходимо учитывать перед его покупкой. Малоэтажного жилья это тоже касается.
Преимущества
К преимуществам, которые подходят под любую разновидность малоэтажного жилья, можно отнести:
- Хорошую экологию. Поскольку малоэтажные здания чаще всего располагаются на окраине города или за его чертой, то жильцы смогут вовсю наслаждаться свежим воздухом, нетронутой природой. Особенно ценят это преимущество семьи с детьми.
- Тишина. Можно отдохнуть от шумного города и насладиться звуками природы, остаться наедине со своими мыслями.
- Достаточное количество парковочных мест. В городе с этим проблема, особенно если нужно припарковаться у какой-нибудь многоэтажки. При проектировании же малоэтажных зданий обычно сразу предусматривается либо гараж, в который машины жильцов могут свободно заезжать, либо большая парковка под открытым небом.
- Небольшой участок земли. При его наличии можно оборудовать зону отдыха или же организовать на нем небольшой садик, огородик.
Если говорить только про многоквартирные многоэтажные здания, то среди их плюсов можно отметить:
- Новые коммуникации. Обычно малоэтажные здания строят в новых районах, поэтому придется меньше переживать о состоянии отопительных систем, канализации.
- Небольшое количество соседей. Обитателям малоэтажного дома будет проще выстраивать между собой дружелюбные отношения, а также создавать комфортную для всех атмосферу.
- Безопасность. Соседи будут знать друг друга в лицо, поэтому посторонняя личность сразу же вызовет у них подозрения. К тому же, территория, на которой расположены малоэтажные здания, часто имеет пропускной режим, видеокамеры. Просто так на нее попасть довольно трудно.
- Гармоничная архитектура. Малоэтажные дома не выглядят как обычные «муравейники». Во-первых, благодаря своей конструкции они не застилают небо. Во-вторых, от них сразу чувствуется уют, комфорт.
- Стоимость. Обычно она ниже, чем в больших многоквартирных домах.
Малоэтажные здания также могут порадовать людей удобными, а иногда и уникальными планировочными решениями. Все же они создаются не по тому же самому принципу, что и многоэтажные.
Недостатки
Малоэтажные здания, к сожалению, обладают не только плюсами, но еще и минусами. Их никак нельзя игнорировать. Среди общих недостатков у малоэтажек можно отметить:
- Удаленность от центра города. Общественный транспорт чаще всего ходит довольно редко в подобные районы, поэтому добраться до них можно только на машине. К сожалению, не все люди могут позволить себе приобрести автомобиль или каждый день вызывать такси до дома.
- Проблемы с Интернетом и ТВ. Это касается совсем уж удаленных районов. Все-таки в наше время проблемы со связью больше исключение из правил.
- Отсутствие развитой инфраструктуры. Школа или детский сад может находиться только в соседнем районе.
А вот у многоквартирных малоэтажных зданий минусы следующие:
- Большие платежи за коммуналку. Поскольку сумма за благоустройство территории, затраты на содержание коммуникаций и их ремонт распределяется на меньшее количество людей, то и коммунальные платежи будут большими.
- Отсутствие лифта, мусоропровода.
К тому же, в районах с малоэтажными домами, как уже говорилось ранее, взаимодействие с соседями бывает слишком уж тесное. Подобное, конечно, нравится не всем людям. Особенно раздражающими бывают чересчур любопытные личности, которые пытаются следить за чужой личной жизнью.
Малоэтажный дом для кого-то может стать отличным вариантом, а для кого-то — всего лишь ступенькой в поиске идеального жилья. Однако полностью отметать его в процессе выбора дома нельзя, ведь жизнь в нем может оказаться максимально комфортной.
Опыт одновременного строительства подземной и надземной частей здания методом up-doun
В условиях плотной городской застройки, а также дефицита свободных участков подземное строительство приобретает особую актуальность, однако местная специфика и гидрогеологические условия делают задачу возведения подземных объектов очень непростой. Это стимулирует инженеров использовать новые методы, которые обеспечивают безопасную эксплуатацию окружающей застройки, позволяют проводить подземные работы практически на любой глубине даже в самых сложных инженерных и геологических условиях. Одним из таких является метод up-down, или «вверх-вниз». Такой способ позволяет на нулевой отметке выполнить перекрытие и продолжить строительство одновременно как вверх, так и вниз. Данная технология является актуальной в современных условиях строительства, так как позволяет возводить здания с меньшим задействованием близлежащих территорий. В статье описан принцип технологии up-down, представлен порядок производства работ, рассмотрены основные преимущества и недостатки данного метода, приведены результаты геотехнического мониторинга окружающей застройки.
Основной областью применения метода up-down является устройство глубоких котлованов в пределах плотной городской застройки. Обычно этот метод используется при невозможности выполнения грунтовых анкеров вследствие стесненных условий и существующей развитой подземной части на соседних участках [1–7]. Кроме того, этот метод используется при малых допустимых деформациях окружающих зданий и сооружений. Явным преимуществом метода up-down является высокий темп строительства при устройстве высотной части (рис. 1).

Рис. 1. Схема производства работ по методу up-down
При многих преимуществах этого метода строительства он в большинстве случаев ведет к удорожанию строительного производства по сравнению со строительством в открытом котловане. Особую сложность представляет собой организация снабжения и логистики при подобном виде работ [8]. Следует отметить, что устройство подземной части по методу «вверх-вниз» требует высокой квалификации подрядчика и детальной проектной проработки [9].
Для производства работ по устройству подземной части при данном методе строительства используется технологии «стена в грунте» и струйная цементация грунта (Jet-grouting). Проектирование конфигурации стены выполняется с учетом особенностей технологического оборудования (гидрофрезы). В ходе подготовительных работ по контуру будущей ограждающей конструкции выполняется форшахта шириной 60…80 см и глубиной до 3,0 м. Стенки форшахты раскрепляются железобетонными монолитными конструкциями.
Разработка грунта в траншее и бетонирование выполняются под защитой глиняного тиксотропного раствора, приготовляемого из бентонитовой глины, что обеспечивает устойчивость стенок траншеи от обрушения. Параметры раствора корректируются при производстве работ на опытном участке.
Укладка бетонной смеси панелей ограждающей конструкции производится методом вертикального подъема трубы. Бетонирование стен под защитой глиняного раствора должно выполняться не позднее чем через 8 часов после образования траншеи в захватке. Бетонирование одной захватки проводится непрерывно на всю высоту. Между захватками выполняется холодный рабочий шов, а армирование захватки — сборными пространственными арматурными каркасами. Глубина ограждающей конструкции по данной технологии может достигать 25…30 м.
По грунтовым условиям «стена в грунте» может применяться в любых дисперсных грунтах.
При устройстве больших котлованов, внутри которых возводится здание или сооружение, ограждающие конструкции, выполненные методом «стена в грунте», используют как внешние стены подземной части. В этом случае нагрузка от здания передается на фундаменты, не связанные с ограждающими стенами.
При необходимости ограждающие конструкции, устраиваемые методом «стена в грунте», могут выполнять двойную функцию: являются и ограждением котлована, и конструктивным элементом.
Современные технологии позволяют устраивать конструкции подземных сооружений разных форм, но традиционные и наиболее часто встречающиеся — конструкции из прямолинейных стенок.
При наличии грунтов, содержащих твердые включения природного или техногенного происхождения (крупные валуны, обломки бетонных конструкций, каменной кладки и др.), при проходке траншеи используется техника, оснащенная фрезерным оборудованием, например, фирм «Бауэр», «Касагранде».
Использование грейферного оборудования, которым крупные включения извлекаются, может привести к деформированию стенки траншеи, падению уровня тиксотропного раствора и деформациям окружающего массива и близ расположенных зданий.
Для надежного уплотнения проблемных стыков между панелями траншейных стен, как показал опыт строительства, успешно может быть применена технология струйной цементации jet-grouting. Она заключается в разрушении и перемешивании грунта мощнонапорной струей цементного раствора, исходящего под высоким давлением из монитора, расположенного на нижнем конце буровой колонны. В результате в грунтовом массиве формируются сваи диаметром 0,6–1,5 м из нового материала — грунтобетона с достаточно высокими несущими и противофильтрационными характеристиками. При этом цементационные работы могут выполняться как снаружи ограждающих котлован стен, так и изнутри котлована до его разработки. С этой целью в зависимости от прогнозируемой величины раскрытия стыков с глубиной могут быть применены неармируемые или армируемые металлическими трубами грунтоцементные колонны диаметром 60 или 80 см.
Для разработки грунтового ядра внутри подземного сооружения, возводимого способом «стена в грунте», рекомендуется применять технологию, которая предусматривает разработку вначале центральной части грунтового массива на глубину одного яруса с сохранением по периферии нетронутых участков. Такой прием облегчает работу ограждающей конструкции. Затем монтируются распорные конструкции, и разрабатывается оставшаяся часть грунта. Одним из существенных преимуществ данных технологий является возможность устройства как отдельных, так и протяженных подземных конструкций с поверхности земли без экскавации котлована [10].
Производство работ по методу up-down считается одним из самых сложных видов строительного производства с геотехнической точки зрения и предусматривает комплексную программу мониторинга в период строительства здания [11].
- Характеристика объекта строительства
Рассматриваемая площадка строительства обладает практически всеми перечисленными осложняющими факторами:
Инженерно-геологические и гидрогеологические условия.
В геологическом строении площадки принимают участие следующие элементы (рис. 2): ИГЭ-1. Современные техногенные отложения, песчано-суглинистые грунты со щебнем кирпича. ИГЭ-2. Глина мягкопластичной консистенции. ИГЭ-3. Суглинки мягкопластичной и тугопластичной консистенции. ИГЭ-4. Супеси пластичные. ИГЭ-5. Пески пылеватые, средней плотности, водонасыщенные. ИГЭ-6. Пески мелкие, средней плотности, водонасыщенные. ИГЭ-7. Пески средней крупности, средней плотности, водонасыщенные. ИГЭ-8.1. Глина полутвердая. ИГЭ-8. Мергель малопрочный. ИГЭ-9.1. Известняк, разрушенный до щебня и дресвы. ИГЭ-9. Известняк малопрочный. ИГЭ-10. Глина полутвердая.
Подземная вода встречена на глубине 3,7…4,0 м от поверхности.
В представленных инженерно-геологических условиях, при наличии в основании значительной толщи слабых грунтов и высоком уровне грунтовых вод, основным требованием к ограждающей конструкции котлована является обеспечение минимального поступления воды в котлован и ограничение дополнительных вертикальных перемещений окружающей застройки. Для определения зданий и сооружений, на которые возможно влияние от строительства проектируемого, предварительно назначается 30-метровая зона, которая впоследствии уточняется расчетами. Выполняется обследование зданий, определяется история их строительства, техническое состояние основных конструктивных элементов. Величина допустимого влияния определяется исходя из условия обеспечения надежности здания и зависит от его технического состояния и конструктивной схемы.

Рис. 2. Инженерно-геологический разрез площадки строительства
Градостроительная и геотехническая ситуация.
Строящееся здание возводится в существующем квартале исторической застройки на месте демонтированного здания. При этом по градостроительным условиям было необходимо сохранить исторический фасад здания, выходящий на улицу. В зону влияния строительства попадают 15 зданий, техническое состояние зданий по результатам обследования оценено как удовлетворительное, предельные дополнительные осадки этих зданий ограничены диапазоном 10…30 мм. Для обеспечения сохранности и механической безопасности зданий при производстве работ по строительству здания и в ходе его эксплуатации необходимо было выполнить комплекс работ по улучшению механических свойств грунтовых оснований (метод компенсационного нагнетания цементного раствора) и усилению конструкции фундаментов. На всех этапах производства работ был организован мониторинг за развитием вертикальных перемещений и техническим состоянием основных конструкций зданий. Схема расположения наблюдательных марок приведена на рис. 3.

Рис. 3. Схема размещения наблюдательных марок (вертикальные перемещения)
Характеристика строящегося здания.
Здание монолитное, железобетонное, с максимальной отметкой верха 34,10 м, прямоугольной формы в плане, состоящее из 6-этажной надземной части и 3-этажной подземной части (гаража). Несущие конструкции — продольные и поперечные монолитные железобетонные стены и колонны. Максимальная глубина котлована 12,60 м. Способ разработки котлована up-down: заглубление под защитой дисков плит перекрытий с возможностью одновременного строительства вверх. Конструкция ограждения котлована: траншейная стена толщиной 640 мм, выполняемая гидрофрезерным оборудованием (базовая машина BAUER BG-28 с гидрофрезой BC-32). Фундамент — свайное поле со сваями-бареттами, опирающимися на однородный скальный грунт (известняки). Вся эксплуатационная нагрузка передается на сваи, железобетонная плита подстилающего слоя толщиной 250 мм не связывается со сваями.
2. Последовательность выполнения работ
Производство работ по устройству подземной части здания выполнялось в следующей последовательности:
Этап 1. Выполнение компенсационного нагнетания цементного раствора в грунтовое основание фундаментов зданий окружающей застройки. Усиление конструкции фундаментов зданий окружающей застройки. Устройство буроинъекционых свай в основании фундаментов сохраняемой части фасада (рис. 4).

Рис. 4. Схема выполнения работ по усилению грунтового основания фундаментов существующих зданий
Усиленный таким образом грунтовый массив является новым техногенным образованием, обладающим высокой степенью жесткости. Методика уплотнения позволяет уплотнять не только дисперсные связанные грунты (глины, суглинки, супеси), но и несвязанные дисперсные грунты (пески, насыпные техногенные грунты). Расширение возможностей применения технологии на широком спектре грунтов происходит за счет подбора качественной характеристики раствора, обеспечивающей ее высокую проникающую способность. Наличие грунтовых вод не является противопоказанием к применению высоконапорной инъекции.
Этап 2 (рис. 5). Выполнение форшахт для устройства ограждения по периметру подземной части здания и для выполнения свай-баретт. Производство работ по устройству монолитной железобетонной плиты рабочего уровня с направляющими гильзами для устройства скважин цементации. Бурение скважин и цементация скального грунта. После цементации вдоль периметра ограждения котлована образуется слой скального грунта с достаточными противофильтрационными свойствами для разработки вертикальных траншей

Рис. 5. Этапы устройства форшахт ограждения по периметру и баретт, цементации основания и бетонирования плиты рабочего уровня

Рис. 6. Этапы устройства ограждающей конструкции, свай-баретт и экскавации котлована
под защитой бентонитового раствора. Водопроницаемость зацементированных грунтов контролируется по величине удельного водопоглощения, установленного при гидравлическом опробовании контрольных скважин. В основании баретт формируется непрерывный пласт сплошного зацементированного скального массива с нормативным пределом прочности на одноосное сжатие — R_с≥11,0 МПа. Для контроля прочности выполняется отбор образцов и их лабораторные испытания.
Этап 3 (рис. 6). Устройство траншейной стены ограждения подземной части методом «стена в грунте» гидрофрезерным оборудованием (единичная заходка — 2800 х 640 мм) в две очереди по захваткам с заведением в водоупор (ИГЭ-10) не менее чем на один метр. Устройство замыкающих грунтобетонных элементов, выполняемых по технологии струйной цементации грунта (Jet-1), между криволинейными захватками с заведением до отметки кровли скального грунта (ИГЭ-8).
Этап 4. Устройство баретт (2800 х 640 мм) с «сердечниками» под временные и постоянные железобетонные и стальные колонны и баретт под башенный кран по технологии «стена в грунте».
Этап 5. Демонтаж форшахт и железобетонной плиты рабочего уровня. Устройство фундамента башенного крана. Срубка шламового бетона верхней части ограждения котлована на высоту 500 мм. Устройство обвязочной балки и периферийной части плиты перекрытия на отметке (-0.100) по инвентарной опалубке.
Этап 6. Поэтапная экскавация котлована до отметки -4,550 м. Демонтаж временных колонн.
Этап 7. Устройство монолитной железобетонной плиты перекрытия на отметке (-4.550) по бетонной подготовке. Устройство вертикальных несущих конструкций минус первого этажа.
Этап 8. Устройство центральной части плиты перекрытия с технологическими проемами на отметке (-0.100). Эта конструкция позволяет вести работы по устройству надземной части здания, поскольку опирается на ранее выполненные сваи баретты и не требует устройства фундаментной плиты на минус третьем уровне. Начало строительства надземной части здания без ограничения скорости производства работ и этажности.
Этап 9. Разработка грунта котлована малогабаритной техникой до отметки -8.500. Устройство монолитной железобетонной плиты перекрытия минус второго этажа на отметке -8.200.
Этап 10. Разработка грунта котлована малогабаритной техникой до отметки -12,600 м. Срубка и оформление оголовков баретт. Устройство дренажной системы по дну котлована. Устройство монолитной железобетонной плиты пола минус третьего этажа.
Этап 11. Устройство вертикальных несущих конструкций минус третьего этажа.
Этап 12. Завершение работ по устройству монолитной железобетонной плиты минус второго этажа. Устройство пандусов и лестничных маршей. Устройство внутренней вертикальной гидроизоляции и прижимной монолитной железобетонной стенки на минус третьем этаже. Для устройства монолитной прижимной стенки в перекрытиях были предусмотрены технологические гильзы-направляющие.
Этап 13. Устройство вертикальных несущих конструкций минус второго этажа. Устройство внутренней вертикальной гидроизоляции и прижимной монолитной железобетонной стенки на минус втором этаже.
Этап 14. Ликвидация временного технологического проема в железобетонной плите на отметке -0.100. Демонтаж временных колонн.
Этап 15. Демонтаж башенного крана. Демонтаж ростверка и баретт башенного крана. Устройство внутренней вертикальной гидроизоляции и прижимной монолитной железобетонной стенки на минус первом этаже. Устройство наружной вертикальной гидроизоляции стилобатной части здания и благоустройство территории.
3. Геотехнический мониторинг
В ходе геотехнического мониторинга выполнялись высокоточные геодезические измерения отметок установленных деформационных марок, оценивалась динамика развития вертикальных перемещений зданий и проводилась визуальная оценка их технического состояния. Динамика развития наиболее интенсивных вертикальных перемещений показана на рис. 7. Вертикальные перемещения остальных марок имеют меньшие значения. Относительная разница дополнительных осадок фундаментов существующих зданий также не превысила предельно допустимого уровня.

Рис. 7. Динамика развития вертикальных перемещений деформационных марок
О стабилизации осадок зданий окружающей застройки можно судить по изменению скорости их развития, а она имеет явную тенденцию к снижению. Это можно хорошо проследить на графике построенных по данным наблюдений. Если в начальный период наблюдения она составляла 0,1…0,15 мм/сут, то через 90 суток она составила 0,03…0,45 мм/сут, следовательно, снизилась в 2,5 …3,0 раза. Такое снижение скорости развития абсолютной величины вертикальных перемещений свидетельствует о процессе их стабилизации.
Заключение
Выбор метода производства работ up-down по устройству здания в стесненных городских условиях оказался полностью оправданным. Использованные при реализации этого метода технологии позволили выполнить работы в установленные сроки, с качеством обеспечивающим механическую безопасность как строящегося объекта, так и окружающей застройки. Производство работ хотя и является технически сложным, но при надлежащем уровне мониторинга позволяет оптимизировать сроки проведения работ. Полученный в ходе строительства опыт может быть в дальнейшем использован при проектировании и строительстве объектов такого уровня сложности.
Литература
1. Абелев М. Ю. Особенности технологии проведения работ по устройству фундаментов: Учеб. пособие / М. Ю. Абелев, Б. М. Красновский. М.: Б. и., 1980. — 45 с.
2. Абелев М. Ю. Деформации сооружений в сложных инженерно-геологических условиях. М.: ЦМИПКС при МИСИ им. В. В. Куйбышева, 1982. — 290 c.
3. Строительство зданий и сооружений в сложных грунтовых условиях / [М. Ю. Абелев, В. А. Ильичев, С. Б. Ухов и др.]; под ред. М. Ю. Абелева. М.: Стройиздат, 1986. — 104 с.
4. Абелев М. Ю., Чунюк Д. Ю, Бровко Е. И. Выправление кренов высотных промышленных и гражданских зданий // Промышленное и гражданское строительство. 2016. — № 11. — С. 54–59.
5. Катценбах Р., Шмитт А., Рамм Х. Основные принципы проектирования и мониторинга высотных зданий Франкфурта-на-Майне. Случаи из практики // Реконструкция городов и геотехническое строительство. 2005. № 9. C. 80–99.
6. Конюхов Д. С. Строительство городских подземных сооружений мелкого заложения. М.: Архитектура, 2005. — 298 с.
7. Chang-Yu Ou. Deep Excavations. Theory and Practice. London: Taylor & Francis, 2006. — 532 p.
8. Щерба В. Г., Абелев К. М., Храмов Д. В., Сагалаков Г. В., Бахронов Р. Р. Особенности обеспечения объектов строительства монолитных многоэтажных зданий в стесненных городских условиях. //Вестник МГСУ. — 2008. — № 3. С. 146–149.
9. Юркевич П. Б. Возведение монолитных железобетонных перекрытий при полузакрытом способе строительства подземных сооружений //Подземное пространство мира. — 2002. — № 1. — С. 13–22.
10. Makovetskiy O., Zuev S. Practice device artificial improvement basis of soil technologies jet grouting. Procedia Engineering. — 2016. — Vol. 165: 15th Intern. sci. conf. Underground Urbanisation as a Prerequisite for Sustainable Development 12–15 Sept. 2016, St. Petersburg, Russia. — P. 504–509.
11. Маковецкий О. А. Зуев С. С. Опыт проведения испытаний баретты большой длины в условиях плотной городской застройки // Жилищное строительство. 2018. — № 9 —С. 13–18.
Авторы статьи:
М. Ю. АБЕЛЕВ, С. С. ЗУЕВ , Р. Р. АХМЕТШИН
Центр инновационных технологий в строительстве Института ДПО ГАСИС НИУ ВЩЭ
АО «Нью Граунд»
Игорь Мурашов: строительные машины и оборудование XCMG являются воплощением современных высоких технологий и качества
Специализированная техника китайского концерна XCMG активно завоевывает российский рынок. Машины и оборудование данного бренда все чаще задействуются на строительных объектах нашей страны. Об особенностях производимых концерном машин, предназначенных для строительства фундаментов и подземных сооружений, рассказал порталу ASNinfo.ru Игорь Мурашов, специалист по буровым установкам компании «СюйГун Ру», являющейся официальным дистрибьютором XCMG в России.
Расскажите поподробнее о деятельности концерна XCMG. Какие достижения можете отметить?
Концерн XCMG ( Xuzhou Construction Machinery Group) был основан в 1989 году в китайском городе Сюйчжоу. За сравнительно короткое время он стал одним из мировых лидеров по производству дорожно-строительной техники. Наша компания ООО «СюйГун Ру» является официальным дистрибьютором XCMG в России, осуществляет поставки большинства видов спецтехники концерна, а также запасных частей.
Приведу несколько показательных цифр. В настоящее время XCMG занимает 4-ое место в мире среди 50-ти крупнейших производителей строительной техники (согласно ежегодному международному рейтингу журнала «Желтая таблица 2020»). Продукция концерна экспортируется более чем в 130 стран мира. Техника, выпускаемая под маркой XCMG, производятся в тесном сотрудничестве с самыми известными мировыми производителями, такими как Liebherr, ThyssenKrupp, Caterpillar. Компании принадлежит контрольный пакет акций компании Schwing - второго по величине производителя бетононасосов в Германии, также немецкой Fluitronics и AMCA Hydraulics из Нидерландов. Численность персонала XCMG - более 26 тыс. человек.

Добавлю, что более 200 млн долларов концерн инвестировал в строительство производственной площадки в Бразилии, 50 млн евро - в строительство нового исследовательского центра в Krefeld's Europark Fichtenhain в Германии. Создана перспективная производственная площадка в Польше. В самый ближайший период планируется открыть 12 заводов XCMG за пределами КНР, а также создать 8 региональных центров продаж по всему миру. Можно с уверенностью сказать, что строительные машины и оборудование, производящиеся под брендом XCMG уже давно узнаваемы и являются воплощением современных высоких технологий и качества.
А можете привести данные по производству буровых установок и спецтехники для строительства фундаментов и подземных сооружений?
Подразделение компании по выпуску машин для выполнения фундаментных и специальных подземных работ называется Xugong Foundation Construction Machinery Co., Ltd. Оно было образовано в январе 2010 года. Площадь предприятия занимает около 100 тыс. кв. м, из них 30 тыс. кв. м - производственные корпуса. Штат сотрудников насчитывает всего около тысячи человек, но современные технологический процесс позволяет выпускать около 1100 единиц машин в год.
На текущий момент завод выпускает роторные буровые установки, анкерные буровые установки, установки горизонтально-направленного бурения, проходческие щиты для микротоннелирования, горнопроходческие комбайны, машины для выполнения работ по технологии «стена в грунте» с грейферным навесным оборудованием или гидрофрезой.

Какие модели сейчас производятся в данном сегменте? Какие их ключевые характеристики можно выделить?
В настоящее время роторные буровые установки XCMG выпускаются под серией XR, крутящий момент вращения ротора которых составляет от 80 кН/м до 793 кН/м. Они способны выполнять работы по различным технологиям: бурение при помощи телескопической штанги келли, CFA (непрерывный шнек), метод раскатки грунта, DTH (пневмоударник). Наш завод буровых машин также может похвастаться тем, что гигантская буровая установка - XR800E - была спроектирована и построена именно на нем. Эта уникальная машина весом в 320 тонн способная бурить диаметром до 4600 мм. Линейка установок «Стена в грунте» серии XG с подъемным усилием 500 - 700 кН с помощью двух синхронно работающих лебедок, расположенных в задней части машины, может сооружать траншеи шириной от 300 до 1500 мм на глубину до 105 м. При этом, по сравнению с классическим тросовым грейфером, его гидравлический собрат обеспечивает более точное копание, с возможностью изменения положения грейфера в траншеи при помощи специальных лап на гидроцилиндрах, которыми можно отталкиваться от стен, тем самым меняя положение грейфера в траншее. Гидравлические фрезы XCMG зарекомендовали себя как высокотехнологичный, точный и производительный инструмент для разработки траншеи «стена в грунте» в твердых и скальных породах. Ширина траншеи может быть от 800 до 1500 мм, а глубина может достигать 85 метров.
Стоит еще упомянуть о популярном в последние годы в России классе многофункциональных машин для укрепления и стабилизации грунтов по таким технологиям, как Jet grouting, анкерное крепление, микросваи и бурение с пневмоударником. В этом сегменте завод представил свою модель XMZ120, способную создать достойную конкуренцию европейским производителям машин подобного класса.
Владельцы и операторы буровых машин XCMG в России уже положительно оценили плавную и информативную работу гидравлики, систему автоматической смазки шарнирных соединений и, как следствие, более легкое и простое ежесменное техническое обслуживание, а также лебедку с намоткой каната в один слой, что позволяет продлить срок службы дорогостоящих стальных канатов на машине.
В качестве производителей комплектующих для буровых машин XCMG были выбраны компании - мировые лидеры по производству компонентов для специальной техники. Это такие всемирно известные бренды, как Cummins, Rexroth, Bonfiglioli, Freudenberg, Hella, Pfeifer, Eaton, FAG и др. Всё вышеперечисленное, в комплексе с высокими стандартами качества XCMG, дает на выходе надежную и сбалансированную по техническим параметрам машину.

Можно ли говорить о глубокой цифровизации продукции XCMG?
Это действительно так. Всем известно, что Китай является лидером в производстве электронных высокотехнологичных систем, которые используются в нашей повседневной жизни, и буровые XCMG так же не остались обделенными высокотехнологичными системами. Так, управление в машинах осуществляется с помощью технологии интеллектуального управления контроллером с CAN шиной, что позволило упростить интерфейс управления и вывести все данные, за которыми должен следить оператор буровой установки во время работы, на один компактный дисплей. Раньше же приходилось следить за множеством достаточно крупногабаритных аналоговых приборов. За всеми неисправностями в работе машины можно также наблюдать в соответствующем меню, быстро находя и понимая, какой датчик или какая система вышли из строя или дали сбой. Ещё одной особенностью китайских машин XCMG является наличие ярких светодиодных фонарей для освещения рабочей зоны. Для слепой зоны сзади и главной лебедки предусмотрены инфракрасные камеры с высоким разрешением, которые, в отличие от традиционных зеркал, обеспечивают хороший обзор в любое время суток и в любую погоду.
Растет ли спрос на буровые установки XCMG в России?
Сейчас буровые установки марки XCMG активно завоевывают российский рынок и доверие наших строителей к китайской строительной технике. География поставок включает в себя многие города России, расположенные в различных климатических зонах и имеющие свои особенности геологических слоев грунта. Роторные буровые установки были проверены в переменчивом климате Приморского края. в Мурманской области им приходилось бурить попадающиеся на разной глубине большие валуны В суровых морозах Сибири и Крайнего Севера они сохраняли возможность работы вплоть до температуры -40°С. В Москве грейферными установками «стена в грунте» строятся станции метро: «Аминьевское шоссе», «Мичуринский проспект», «Проспект Вернадского», «Славянский мир».
Мы признательны тем людям и компаниям в России, которые оказали нам глубокое доверие и остановили свой выбор на марке XCMG, и надеемся, что другие строители, которые ищут новые машины для своих амбициозных проектов, также выберут XCMG в качестве долгосрочного надежного партнера!
МАТЕРИАЛЫ ПО ТЕМЕ: