Современное мостостроение в России


14.11.2024 09:00

Мостостроение является одним из важнейших направлений инфраструктурного развития нашей страны. России нужны как дороги, так и современные надежные мосты, способные обеспечить безопасное и комфортное движение транспорта.


Сегодня отечественные архитекторы при строительстве мостов применяют новейшие инженерные решения, технологии и материалы. Их проекты становятся не просто функциональными элементами инфраструктуры, но и выглядят как настоящие произведения архитектурного искусства, украшающие облики российских городов.

Современные технологии возведения мостов

В сравнении с другими строительными отраслями мостостроение и по сей день остается одним из самых консервативных направлений. Это вызвано не столько отсутствием новшеств (они, безусловно, есть), сколько долгим согласованием, внедрением и проверкой любых новых решений. Безопасность по-прежнему стоит в приоритете.

Материалы

И все же положительные изменения есть. И в первую очередь они заметны в области используемых материалов.

Бетон

Еще 20 лет назад базовым стройматериалом являлся бетон. Он имел два неоспоримых преимущества: прочность и долговечность. Дополнительным бонусом шли универсальность, относительная дешевизна и низкие затраты на техническое обслуживание

Бетон может принимать различные формы, что позволяет реализовать любые архитектурные решения. Он до сих пор является одним из наиболее доступных строительных материалов в плане цены, особенно при наличии близлежащих источников сырья. И наконец, бетонные мосты требуют меньших затрат на ремонт и содержание, в сравнении с конструкциями из других материалов.

Главным недостатком материала является его тяжеловесность. Массивные бетонные мосты оказывают значительную нагрузку на грунт, что при определенных условиях усложняет их возведение. Например, при строительстве бетонного моста через реку для повышения судоходности нередко требуется увеличить длину пролетов между опорами. Именно вес конструкции становится основным препятствием для реализации этой идеи.

Сверхлегкий бетон

Сверхлегкий бетон — это специальный вид бетона, который обладает более низкой плотностью по сравнению с обычным бетоном. Благодаря этому существенно снижается нагрузка на фундаменты и опоры мостов.

Несмотря на низкую плотность, за счет применения специальных добавок и армирования сверхлегкий бетон обладает достаточно высокой прочностью на сжатие (до 60 МПа). То есть снижение общего веса конструкции происходит не за счет ущерба ее прочности.

Также стоит отметить устойчивость к воздействию агрессивных факторов окружающей среды. Легкий бетон коррозиестоек. К тому же малый вес материала значительно облегчает транспортировку и монтаж.

Нанокомпозиты

Нанокомпозитные материалы привлекают своими отличными эксплуатационными характеристиками. В чистом виде это добавки вроде молибдена и ванадия. При введении их в состав стальной арматуры они усиливают ее прочность, повышают стойкость к воздействию внешних температур.

Как известно, низкие температуры воздействуют на микроструктуру этого материала, делая его более хрупким. Добавление в состав нанокомпозитов решает эту проблему. Из такой стали изготавливается арматура, отдельные элементы моста, сварные конструкции.

Нанокомпозиты могут вводиться в состав бетона или использоваться в процессе сварки. Например, присадки, содержащие кальций и магний, уменьшают размер ферритных и цементитных фаз стали, делая соединение более прочным и долговечным

Стеклопластик

Стеклопластиковые конструкции значительно легче традиционных железобетонных или металлических аналогов. Это позволяет снижать нагрузки на мостовые опоры и фундаменты. К тому же стеклопластик устойчив к коррозии, старению, истиранию и внешним воздействиям.

Благодаря малому весу (менее 20% от веса железобетона) и модульной конструкции, стеклопластиковые элементы мостов легче транспортировать и собирать на объекте. Первый автомобильный мост из стеклопластика был возведен в России еще в 2014 году. С тех пор материал все чаще применяют в российском мостостроении в качестве альтернативы ряда железобетонных элементов.

Однако инновационными решениями изобилует не только материалы.

Префабрикация

Современные мостостроение все чаще использует метод префабрикации. Его суть заключается в переносе части строительных процессов на завод, где заранее изготавливаются конструкции или их отдельные части, которые затем доставляются на строительный объект.

Такой подход позволяет:

  • сократить сроки строительства;
  • повысить качество изготовления за счет использования сверхлегких материалов;
  • снизить затраты;
  • уменьшить зависимость от погодных условий (на сборку в заводских условиях не влияет погодный фактор);
  • повысить безопасность (снижаются риски, связанные с работой строителей на высоте).

Именно использование новых композитных материалов предоставило возможность чаще использовать метод префабрикации. Уменьшение веса конструкций, узлов и отдельных мостовых элементов позволило обеспечить их последующую транспортировку к объекту, что в случае с железобетоном не представлялось возможным.

Чаще всего на заводах, собирают следующие виды префабрикатов:

  • пролетные строения мостов;
  • опоры и фундаменты;
  • подпорные стены;
  • парапеты и ограждения;
  • дорожные плиты.

Использование метода префабрикации позволяет значительно повысить эффективность строительства мостовых сооружений.

Новейшая техника

Инновационные технологии мостостроения сложно представить без использования новейшей прогрессивной техники. Одним из таких примеров является гигантский мостоукладчик SLJ900/32.

Это уникальная китайская разработка, предназначенная для быстрого возведения больших мостовых пролетов. Мостоукладчик был создан компанией Wowjoint Machinery специально для проекта возведения группы мостов при строительстве дороге из Пекина в Монголию.

Вес машины — 580 тонн. Длина — 90 метров, высота — 9, а ширина — более 7. Мостоукладчик может осуществлять работу с бетонными блоками массой до 9 тысяч тонн. Его конструкция состоит из огромной самоходной стрелы, установленной на специальном шасси с 48 колесами. Стрела способна поворачиваться на 360 градусов.

Интересен и принцип работы мостоукладчика SLJ900/32:

  • Предварительно на разных концах будущего моста устанавливаются опоры.
  • Мостоукладчик подъезжает к началу пролета и поднимает с помощью стрелы огромные сборные секции моста весом до 1800 тонн.
  • Аккуратно перемещая стрелу, мостоукладчик устанавливает эти секции на опоры, формируя пролет.

Таким образом, SLJ900/32 может сооружать мостовые пролеты длиной до 300 м.

Использование мостоукладчиков значительно сокращает время строительства моста, позволяет сэкономить на трудоресурсах, дает возможность возводить мостовые сооружения в труднодоступных районах. В России только присматриваются к использованию мостоукладчиков, производя все работы, связанные с возведением мостов традиционным методом с помощью кранов.

Новые методы мониторинга

Ключевым фактором, обеспечивающими безопасность и надежность мостов, является мониторинг процесса их возведения.

Для этого устанавливаются датчики для отслеживания деформаций, напряжений, нагрузок и вибрации, проводятся регулярные инспекции по оценке состояния ключевых элементов, контролируется воздействие внешних факторов.

В последние годы все чаще применяются БПЛА, которые позволяют получать визуальную информацию с труднодоступных или опасных для человека участков конструкции. Аппараты также используются для регулярной высокочастотной съемки, позволяющей отслеживать ход строительных работ и изменения в состоянии конструкций. На основе материала создаются 3D-модели и ортофотопланы, которые помогают строителям точно оценить геометрические параметры моста.

Применение БПЛА существенно повышает эффективность контроля за ходом строительства, обеспечивая высокую точность, безопасность и оперативность обследований.

Инновационные конструктивные решения

Если говорить о конструктивных решениях, то первое, что приходит на ум – это участившееся строительство висячих и вантовых мостов для больших пролетов.

Первые представляют собой конструкцию с основным несущим элементом в виде гибких железобетонных кабелей, подвешенных между опорами. Они образуют параболическую или каскадную форму, поддерживая проезжую часть моста. Главными преимуществами таких сооружений является минимальный расход материалов, эстетичность и возможность преодоления очень больших пролетов (до 2000 м).

Вантовый мост состоит из высоких пилонов, от которых к проезжей части отходят наклонные стальные тросы-ванты. Они воспринимают нагрузку и передают ее на пилоны, обеспечивая жесткость конструкции. Русский мост во Владивостоке является примером удачного возведения подобной инженерной конструкции.

Инновации заметны и в сфере традиционного мостостроения. Здесь инженеры активно работают над эффективными конструкциями опор, способными противостоять сейсмическим нагрузкам и экстремальным воздействиям.

Отдельно стоит упомянуть применение шок-трансмиттеров. После решения строить Крымский мост, возник резонный вопрос о возможной сейсмической и динамической нагрузке на конструкции сооружения. Трансмиттеры, установленные между опорами и пролетами моста, обеспечивают небольшое смещение последних при воздействии высоких температур и равномерно распределяют нагрузку между опорами при землетрясении.

Основные этапы строительства

Процесс возведения моста требует тщательного планирования. Поэтому любая стройка начинается с предпроектных исследований. Как правило, они включают инженерно-геологические изыскания, оценку гидрологических условий и предварительные расчеты нагрузок и прочности.

Специалисты изучают топографические карты района, геологические отчеты, оценивают рельеф, гидрогеологические условия, строение грунтов. Также возможно проведение геофизических исследований и испытание грунтов (статическое и динамическое зондирование, пробные нагрузки).

Проектирование

При создании проекта сначала разрабатывается конструктивная схема моста. Определяется тип мостового сооружения (балочный, арочный, висячий, вантовый), его высота, длина моста и пролетов, тип и конструкции опор.

На этапе проектирования подбираются материалы, производится расчет и проектирование фундаментов и опор. Обязательно разрабатывается проектная и рабочая документация.

Начало работ

Подготовительный этап начинается с расчистки и планировки строительной площадки, устройства подъездных путей и временных сооружений. Дополнительно организуются складские и бытовые помещения.

Тип фундамента определяется еще на этапе проекта. В зависимости от условий грунта это может быть ленточный, свайный, плитный или буронабивной фундамент. Далее следуют работы по возведению опор (бетонных, металлических или комбинированных) или установка анкерных систем для висячих и вантовых мостов. Все зависит от того какая конструкция возводится.

Монтаж пролетных строений или установка вант

Сборка металлических или железобетонных ферм может осуществляться как на месте стройки объекта, так и непосредственно на заводе-изготовителе. После их закрепления начинается этап монтажа пролетов (чаще всего методом надвижки). По окончании настилается дорожное полотно, устанавливаются перила и ограждения.

При возведении вантовых конструкций монтируются высокопрочные тросы, натягиваются и закрепляются на опорах кабели, а вантовые элементы присоединяются к пролетным строениям.

Завершающие работы

На заключительном этапе строятся подходы к мосту, организуется освещение, наносится дорожная разметка, устанавливаются знаки.

Обязательно проводятся пусконаладочные работы, статические и динамические нагрузочные испытания.

Проблемы современного мостостроения

Одной из базовых проблем мостостроения в России всегда были сложные геологические и климатические условия. На внушительной части нашей страны присутствуют вечномерзлые, заболоченные, заторфованные и другие виды неустойчивых грунтов.

Ряд регионов характеризуется сейсмической активностью. Погоду определяет континентальный климат с перепадами температур, заморозками и оттепелями. Кроме того, большинство рек зимой замерзает, а, как известно, ледообразование требует дополнительной защиты мостовых конструкций. Возведение мостов в таких условиях существенно усложняет работу инженеров и увеличивает стоимость строительства.

Вторая проблема, связана с возведением вантовых мостов. В России отсутствует национальный стандарт по их проектированию. В связи с этим возникают вопросы, связанные с безопасностью эксплуатации самих мостов, долговечности используемых материалов. Отсутствие единых принципов и методов проектирования вантовых мостов усложняет их строительство и эксплуатацию и мешает оптимизировать затраты, связанные с организацией строительства.

Также в России нет стандарта по использованию несъемной сталефибробетонной опалубки при возведении пролетов монолитного типа. Сталефибробетон известен своей повышенной трещиностойкостью. К тому жен он позволяет сократить сроки работ и трудозатраты на проект. Бетон этого вида применяется в мостостроении для увеличения несущей способности и повышения устойчивости к деформациям.

Недостаток производства полимерных композиционных материалов – тоже является одной из проблем современного мостостроения. Их дефицит ограничивает возможность использования новейших конструкций и форм мостовых сооружений, увеличивает сроки строительных работ в сравнении с другими странами.

Импортозамещение в строительстве мостов

Международные санкции достаточно сильно повлияли на сферу российского мостостроения. Рынок покинула американская компания «Maurer», производившая деформационные швы, норвежские и немецкие производители антикоррозийных системы защиты. Однако им на место пришли российские компании с менее известными именами, но качественной продукцией, которая почти не уступает импортным аналогам.

У ряда строительных организаций возникли проблемы с обслуживанием уже имеющейся спецтехники «New Holland», «JCB», «Liebherr», «Bauer». Решением стали поставки деталей и техники через ОАЭ, Казахстан и Армению. Конечно, цена закупок и сроки поставок увеличились, но не то, чтобы очень критично.

Большой выбор мостостроительной техники предлагает Китай. При этом в плане качества и надежности спецтехника из Поднебесной мало в чем уступает европейцам и американцам. Российские производители также увеличили выпуск буровых установок, гидроподъемников и автовышек.

Оснащение для вантовых мостов долгие годы закупалось в Швейцарии и Франции. Например, ванты для знаменитого Русского моста во Владивостоке поставляла французская компания Freyssinet. В настоящее время мостовые канаты закрытого типа производятся на российском предприятии «Северсталь», а системы преднапряжения выпускаются компанией «СТС» (Современные Технологии Строительства).

Выпуск шпунтовых свай налажен на предприятиях концерна «Северсталь». Холодногнутые шпунты позволяют снизить стоимость строительства почти на 30%, а многогранные можно использовать даже в Арктической зоне.

Инновационные проекты

Одним из самых амбициозных и обсуждаемых проектов является массовое возведение алюминиевых мостов. В Европе подобные искусственные сооружения возводятся с 1990 года, в России первый алюминиевый мост был построен еще в 1969 году в Ленинграде. При этом последние его исследования показали, что даже спустя более чем полвека, ни его несущая способность, ни отдельные элементы не пострадали.

С 2017 года в России было возведено несколько пешеходных мостов, однако к строительству автодорожных видов еще не приступили. Их возведение требует модернизации нормативной базы. Так, в 2019 году Минстрой РФ принял по алюминиевым мостам свод правил СП 443.1325800.2019, теперь же изменений ждут своды и нормативы, регулирующие процессы монтажа и обследования.

Строительство алюминиевых мостов в России активно поддерживается на государственном уровне как эффективный способ развития инфраструктуры в труднодоступных районах и на территориях Арктической зоны.


ИСТОЧНИК ФОТО: ASNinfo

Подписывайтесь на нас:

Ветровые электростанции


06.11.2023 09:00

Созданные ветряные электростанции в качестве источника энергии используют силу ветра. В результате обеспечивается выработка дешевой электроэнергии. Применение таких конструкций имеет высокую эффективность, поскольку перемещение воздушных масс идет постоянно, и этот источник энергии является возобновляемым. С течением времени использование ветровых генераторов становится все популярнее, что влечет за собой развитие данного направления. Выражается это в появлении новых разновидностей ветровых агрегатов, используемых в промышленности и для частных нужд.


Основные характеристики и принцип работы

Работа ветряных электростанций характеризуется следующими показателями:

  1. Мощностью. Это основной параметр ветровой электростанции. Мощность установки зависит от способности генератора вырабатывать электроэнергию при стандартной скорости ветра равной величине 12 м/с.
  2. Номинальным напряжением. Данная величина, которая также вырабатывается генератором, может изменяться в широких пределах. Она бывает 220 В, 12 В и 24 В.
  3. Мощности турбины. Данная величина зависит от диаметра турбины,
  4. Производительностью. Этот параметр позволяет определить количество вырабатываемой ветроустановкой электроэнергии в год.

При выработке электроэнергии важной величиной является диаметр турбины, которая должна выдержать сильные порывы ветра. Ее расчет ведется с учетом особенностей региона, поскольку в каждой местности перемещение воздушных масс обладает разной силой. При этом за базовую величину берется максимальная сила ветра.

Производителями выпускается большое разнообразие ветроустановок. При этом принцип действия у них всех одинаковый. Заключается он в следующем:

  1. В верхней части установки располагаются лопасти, задача которых состоит в захвате перемещающихся воздушных масс.
  2. При соприкосновении ветра с лопастями последние приводятся во вращение, которое передается на ротор генератора.
  3. Как только генератор начинает вращаться, между магнитами статора тут же происходит формирование электромагнитного поля, с последующим появлением в обмотках статора переменного электрического тока. Его создание происходит на основе физического явления электромагнитной индукции.
  4. На следующем этапе происходит образование постоянного тока путем прохождения его сквозь выпрямитель.
  5. Затем он снова преобразуется в переменной ток, частота которого составляет 50-60 Гц. Достигается это путем прохождения его через инвертор. Выработанная энергия поступает в электрические сети.

Из-за разного рельефа местности часто ветряные электростанции устанавливаются на высоких мачтах, поскольку близко к земле потоки воздуха не отличаются стабильностью, а также их сила уменьшается. При этом на высоте они дуют равномерно, что обеспечивает оптимальную эксплуатацию установки.

Разновидности по конструкции

Существует несколько видов ветрогенераторов, которые разделяются по конструкции и месторасположению. Каждая из них отличается своей особенностью и применяется с учетом конкретных условий. При этом принцип действия у всех ветряных электростанций одинаковый, основанный на использовании силы ветра.

Горизонтальные

Особенностью данного типа ветрогенераторов является расположение оси вращения в горизонтальном направлении. Это сложные устройства, отличающиеся высокой эффективностью. Такой конструкции ветрогенераторы выпускаются нескольких видов:

  1. С фиксированным углом наклона лопастей. Такого типа ветровые электрогенераторы можно встретить чаще всего. Их особенностью являются лопасти, расположенных с наиболее эффективным углом наклона, что позволяет их использовать при любой силе и скорости ветра.
  2. С регулируемым углом наклона лопастей. В таких ветровых установках есть возможность изменять расположение наклона лопастей. Это увеличивает универсальность оборудования и дает возможность подстраиваться под любую ветровую нагрузку.
  3. Саблевидной формой лопастей. Такие лопасти имеют особую геометрию, специально приспособленную под высокую скорость ветра.

Горизонтальные ветровые электростанции нашли наиболее широкое применение среди других типов оборудования.

Вертикальные

Это ветровые устройства, ось вращения в которых установлена вертикально. В результате у них отсутствует зависимость от направления ветра. Такие изделия имеют упрощенную конструкцию, но обладают меньшей эффективностью. Вертикальные агрегаты выпускаются следующих видов:

  1. С ротором Савониуса. Геометрия лопастей выполнена в виде синусоиды, что способствует формированию подъемной силой при попадании на них воздушных масс.
  2. Ветровая электростанция Дарье. В состав конструкции входит ряд лопастей, которые устанавливаются вдоль вертикальной оси. Они также имеют особую изогнутую форму, которая обеспечивает создание подъемной силы.
  3. Ветрогенераторы Фена. Лопасти устанавливаются на цилиндрической турбине и приводят ее во вращения под воздействием силы ветра.

Вертикальные ветровые электростанции также находят широкое применение в местах, где ветер может часто менять направление.

Роторные и карусельные

В роторных устройствах используются специальные узлы для улавливания ветра с дальнейшим превращением его в энергию. Оборудование имеет усложненную конструкцию, но обладает большой эффективностью. Такие ветрогенераторы могут работать в плохих погодных условиях. При этом их монтаж не вызывает сложности. Рассматривая недостатки, можно выделить небольшую высоту башни, что увеличивает риск разрушения лопастей. Также аппараты издают повышенный шум.

Высокой надежностью обладает и карусельное оборудование, принцип работы которого заключается в следующем:

  1. Движущийся воздух попадает через патрубок во вращающийся барабан ветрогенератора.
  2. При вращении барабана за счет центробежной силы вся присутствующая в воздухе пыль отбрасывается к боковым стенкам, а затем попадает в пылесборник. В результате воздух очищается и не загрязняет оборудование

Роторные и карусельные ветровые электростанции относятся к наиболее качественному оборудованию. Оно выполнено в соответствии со всеми технологическими требованиями, а почему необходимо придерживаться разработанных норм, не отклоняясь от стандарта, вы можете узнать здесь.

Типы ветровых электростанций

Важным моментом является место установки ветровых электростанций. В зависимости от этого они разделяются на виды:

  1. Прибрежные. Устанавливаются на некотором расстоянии от берега моря или океана. Именно в этом месте регулярно дует бриз, способствующий стабильности работы установки. Его присутствие обеспечено разностью температур между морской водой и поверхностью суши. В результате формирование ветра происходит днем и ночью, поскольку перемещение воздушных масс постоянно чередуется с морского побережья в сторону водоема, а затем в обратном направлении.
  2. Наземные. Установка таких ветровых электростанций ведется на возвышенных участках земли. Желательно, чтобы высота территории превышала 50 м. Очень удобными местами являются холмы. Формирование нужной площадки ведется на протяжении 7-10 дней. Основная сложность заключается в выборе местности, поскольку необходимо обеспечить подъезд строительной техники, а это связано с наличием дорог. Кроме того, длительность процедуры монтажа ветрогенераторов увеличивается за счет необходимости согласования всей документации в различных организациях.
  3. Шельфовые. Такие ветрогенераторы располагаются в море на расстоянии от берега в районе 60 км. К достоинству установок относится их месторасположение, когда не занимается полезная территория земли. Также они не видны с берега и при работе показывают хорошую эффективность. Их строительство ведется в местах, где присутствует небольшая глубина. Это необходимо для закладки свайного фундамента на глубину 30 м. Также под землей прокладываются подводные кабеля. Строительство шельфовых электростанций обходятся намного дороже, чем их наземные варианты. Для изготовления используются качественные материалы, поскольку в соленой водной среде они быстро покрываются коррозией. При строительстве таких сооружений специально используются самоподъемные корабли.
  4. Парящие. Особенностью конструкции таких ветровых электростанций является их расположение над землей. С помощью специальной оболочки, наполненной гелием, ветрогенератор поднимается на высоту несколько сотен метров. Внутри агрегатов расположены турбины мощностью до 40 кВт. Оборудование имеет множество преимуществ, но применяется редко из-за сложности его изготовления и монтажа.
  5. Плавающие. Это ветровые генераторы, выполненные в виде платформы с башней. Устройство опускается под воду на десятки метров, а верхняя часть возвышается над морской гладью. Для стабилизации системы внутри водоема используется специальный балласт, сделанный из гравия или любых камней. Для удержания оборудования на месте применяются якоря.
  6. Горные. Такое оборудование представляет собой обычные ветровые генераторы, только установленные в горах. Они характеризуются большой эффективностью, поскольку в горной местности всегда присутствуют сильные ветры.

Каждый тип ветрогенератора обладает своими особенностями и применяется в той местности, где от него можно получить максимальную отдачу.

Правила выбора

При выборе ветрогенератора нужно учитывать множество параметров оборудования:

  1. Мощность. Для этого необходимо рассчитать, какое количество электроэнергии необходимо для обслуживания данной территории. К полученному результату следует обязательно прибавить запас на случай возможных потерь.
  2. Тип оборудования. Обычно вопрос стоит перед выбором горизонтального или вертикального аппарата. В первом случае производительность агрегата будет выше, но это произойдет только при нужном направлении движения воздушных масс. Вертикальный вариант имеет меньшую эффективность, но занимает небольшое пространство и не зависит от направления ветра.
  3. Размер ротора. Здесь все зависит от необходимой производительности оборудования. Большого размера ротор значительно эффективнее, но требует наличия значительного пространства. Чтобы сделать правильный выбор, необходимо предварительно провести расчеты.
  4. Материал лопастей. Такие изделия могут изготавливаться из пластика, стали или алюминия. Металлические лопасти обладают большей прочностью, но и выше по цене. Оптимальным вариантом является пластик. По своим характеристикам он прочный и долговечный.
  5. Инвертор. Это прибор, в задачу которого входит преобразование переменного тока с целью зарядки аккумуляторов. Устройство может быть в составе ветрогенератора или установлено отдельно.
  6. Производитель. Здесь нужно выбирать надежного хорошо известного поставщика. При покупке такого дорогостоящего оборудования обязательно следует проверять гарантию и возможность его ремонтирования в сервисных центрах.
  7. Стоимость оборудование. Это обстоятельство также играет не последнюю роль и во многом зависит от бюджета хозяина.

Кроме перечисленных факторов обязательно нужно заранее определиться с местом установки оборудования. Здесь следует ориентироваться на территорию, насколько стабильно дуют ветры, и меняют ли они свое направление движения. Для этого необходимо выбрать возвышенность, где сила перемещения воздушных масс будет максимальной. В том случае, когда ветры дуют слабо, требуется подбирать соответствующее оборудование с высоким КПД.

Использование силы ветра как альтернативного возобновления источника энергии относится к перспективному направлению. Установленные в ряд ветрогенераторы дают хороший результат, но при изготовлении оборудования следует обращать внимание на качество его производства и ответственность работников. Об этом можно почитать здесь.


ИСТОЧНИК ФОТО: ASNinfo

Подписывайтесь на нас:

Альтернативные источники энергии


03.11.2023 09:00

Регулярное использование стандартных источников энергии приводит к их постепенному истощению. Причина состоит в том, что данные ресурсы формировались на протяжении длительного времени, и быстрому восстановлению не подлежат. С учетом того, что они создавались стихийно на протяжении миллионов и миллиардов лет, человечество на их пополнение рассчитывать не может.


Поэтому сейчас за основу взяты энергосбережение и энергоэффективность, о чем можно почитать в нашей статье. В этих условиях актуальным становится вопрос использования альтернативных источников энергии, преимуществом которых является их самостоятельное возобновление.

Общее представление об альтернативной энергии

Под альтернативной энергией понимаются природные явления, характерная черта которых — их регенерация. Если к невозобновляемым ресурсам относятся нефть, уголь, газ, то альтернативные варианты гораздо шире. Это многие явления природы: солнечная энергия, сила ветра, приливы и отливы.

Альтернативные источники энергии имеют большое количество преимуществ, которые состоят в следующем:

  1. Экологичность. Недаром они еще носят название «зеленые». Если при сжигании угля или нефти идут большие выбросы в атмосферу, то в данном случае они отсутствуют, и не загрязняется атмосфера.
  2. Доступность. Нет необходимости в поиске месторождений, поскольку часто альтернативные виды энергии лежат на поверхности.
  3. Экономия. Используемая энергия имеет очень низкую себестоимость.

Если рассматривать недостатки, то тут следует отметить зависимость от погоды и невысокий коэффициент полезного действия использования энергии.

Солнечная энергия

Солнечное излучение — мощный энергетический ресурс Земли. Правильное его использование дает возможность вести преобразование солнечного потока в тепловую и электрическую энергию. Небесное светило имеет возможность не только покрывать светом нашу планету, но и при правильном использовании излучения обеспечивать электрические сети достаточным количеством энергии.

Использование солнечной энергии ведется следующими способами:

  1. Освещение. Это очень эффективно проявляется при уличном освещении. Установленные беспроводные светильники используют в качестве энергии солнечный свет. Для этого, сначала, происходит его преобразование в электричество, которое на протяжении дня накапливается в аккумуляторах. В ночное время происходит его отдача.
  2. Отопление. Чтобы отопить дом, на крыше устанавливаются специальные панели способные поглощать солнечные лучи. Затем происходит их преобразование в тепловую энергию, с помощью которой ведется нагрев котла. Подобные панели можно использовать также для выработки электрической энергии с целью освещения помещения. Такое оборудование обеспечивает высокую степень экономии.
  3. Приведение в движение транспорта. В данном случае используется наиболее инновационный вариант, основанный на выработке фотоэлектрической энергии. Как результат в движение приводятся поезда, автомобили, автобусы и даже самолеты.
  4. Для мобильных устройств. Очень удобным вариантом является использование солнечной энергии для зарядки мобильных портативных электронных аппаратов. Для этого в телефонах, планшетах или электронных книгах устанавливаются специальные батареи способные накапливать в себе солнечную энергию, что является большим удобством для их пользователей.

Солнечное изучение относится к очень дешевому источнику энергии, поэтому ее использование является инвестированием в будущее.

Ветроэнергетика

Ветры, дующие на нашей планете, выдают столько энергии, сколько не могут обеспечить более 100 протекающих рек. Захватываемый турбинами воздушный поток преобразовывается там сначала в механическую, а затем и электрическую энергию. В качестве основного оборудования используются ветрогенераторы, состоящие из генератора, лопастей и системы управления. Вращение лопастей осуществляется под давлением воздушного потока. Подаваемая на генератор механическая сила преобразуется в электрическую энергию.

Преимущества использования передвижения воздушных масс выражаются в следующим:

  1. Выработка экологически чистого источника энергии. Работающее оборудование совершенно не загрязняет окружающую атмосферу.
  2. Низкие расходы. После установки оборудование нуждается только в обслуживании, поскольку для его работы не требуется топливо.
  3. Неисчерпаемость ресурса. Ветры дуют с самого начала существования планеты и этот процесс никогда не заканчивается.

К некоторому недостатку можно отнести потребность быстрого перемещения воздушных масс. Чтобы генератор работал нормально, скорость ветра должна составлять порядка 12-25 м/с и это является основным условием эффективности функционирования оборудования.

Гидроэнергетика

Движение воды обладает огромным ресурсом. Особенно это касается рек, где присутствует сильное течение. Чтобы использовать такую энергию, строятся гидроэлектростанции, в состав которых входят следующие компоненты:

  1. Дамба. Это земляное или каменное перекрытие, сдерживающее напор воды.
  2. Водозабор. Установленное на дамбе сооружение для отбора из водохранилища жидкости.
  3. Турбина. Механизм, вращающийся под напором воды и передающий механическую энергию на генератор.
  4. Генератор. Основной агрегат, производящий электрическую энергию.

Преимущества функционирования ГЭС состоят в следующем:

  1. Высокая экономическая эффективность и производительность. ГЭС работает без высоких эксплуатационных затрат.
  2. Надежность. Выражается это в способности работы ГЭС на протяжении многих десятков лет вне зависимости от изменений погоды.
  3. Чистота производства. При выработке энергии совершенно не загрязняется атмосфера.
  4. Управляемость. В случае необходимости всегда есть возможность сократить выработку электроэнергии при уменьшении на нее спроса.

Строительство ГЭС относится к сложному и дорогому процессу, но вырабатываемая электроэнергия имеет небольшую цену.

Энергия волн

Энергия волн также относится к неисчерпаемому источнику энергии, потому что их движение происходит постоянно. Волнообразование возникает под влиянием солнечных лучей, которые нагревают водную гладь, вызывая этим волнение поверхности. В дополнение к этому на величину волн влияют порывы ветра.

Для использования такого источника энергии применяются специальные установки. В состав конструкции входят камеры, нижней частью погруженные в воду, а удержание их на поверхности происходит за счет наличия поплавков, наполненных искусственным атоллом. Это буй-генератор, позволяющий аккумулировать энергию морских волн и вести дальнейшую их передачу на станцию, где она преобразовывается в электричество.

Преимущества такого оборудования выражаются в следующем:

  1. Монтаж конструкции возможен прямо на мостовых опорах, которые воспринимают на себя удары волн.
  2. Высокая эффективность. При достаточном волнении моря она выше, чем у ветрогенераторов.

Присутствие такой установки также позволяет заменить монтаж волногасителей, поскольку они представляют собой надежную преграду от движущихся валов.

Приливы

Под воздействием гравитационных сил планет и в первую очередь Луны уровень моря постоянно изменяет свое положение. Это выражается в формировании приливов и отливов, что влечет за собой появление течений, которые используются для генерации энергии. Обычно такие явления больше преобладают в прибрежных районах, поскольку там течение обладает особой силой. Именно поэтому монтаж установок ведется вдоль береговой линии. Используемое оборудование бывают 3 типов:

  1. Приливные турбины. Такие агрегаты представляют собой подводные мельницы. Расположенные в них турбины вращают водные потоки, а затем механическая энергия передается на генератор для выработки электрического тока.
  2. Приливные заграждения. Это огромные строительные конструкции, внешне напоминающие ГЭС, но больших размеров, поскольку они должны полностью перекрыть лиман или залив. Принцип действия заключается в переливе воды через плотину во время прилива и пропуска ее сквозь открывающиеся створки с вращением турбин при отливе.
  3. Приливные лагуны. Такие конструкции представляют собой также приливные заграждения, но меньших размеров. Фактически это электростанции, установленные на небольшой территории моря или океана.

Основным преимуществом такого возобновляемого источника энергии является его предсказуемость. Приливы и отливы будут происходить всегда, пока существует океан.

Гидротермальная энергия

На сегодняшний день геотермальная энергетика получила очень широкое распространение. Фактически данный метод открывает неограниченные возможности получения дешевого электричества. Его суть заключается в использовании тепловых источников, исходящих из недр Земли практически от самого ядра, раскаленного до температуры 3600⁰. Принцип добычи такого вида альтернативной энергии заключается в бурении скважин, через которые прорывается на поверхности тепло в виде пара, вращающего установленные турбины.

Отдельной разновидностью гидротермального источника является петротермальная энергетика, когда используется тепло сухих горных пород. Здесь за основу берутся такие данные как увеличение температурных показателей по мере отдаления от поверхности Земли. Это в среднем составляет 0,02° на метр. На отдельных участках местности при бурении скважин до 5 км температура может повыситься на 100°.

Петротермальные источники использовать намного удобнее, потому что они располагаются практически в любом месте. При этом гидротермальная энергия может быть найдена только в скрытых зонах вулканической деятельности. Это влечет за собой дополнительные трудности, связанные со сложностью доступа к источнику тепла.

При добыче гидротермальной энергии применяются следующие методы:

  1. Традиционный. Используется в тех случаях, когда по скважинному каналу к источнику тепла имеется прямой доступ.
  2. Фонтанный. За счет скопившегося в недрах земли пара излияние энергии происходит самостоятельно.
  3. С использованием насосных станций. Он применяется тогда, когда самостоятельный выход энергии отсутствует.
  4. Геоциркуляционный. Особенностью этого метода является то, что после отработки ресурса он обратно отправляется в недра Земли.

Большие запасы тепловой энергии, подаваемой на поверхность Земли, дают возможность экономить традиционное топливо, запасы которого с течением времени исчерпываются.

Биотопливо

Под биотопливом понимается биологическая масса, обработанная специальным термохимическим способом. В зависимости от своего агрегатного состояния оно бывает 3 типов:

  1. Твердое. Сюда относятся биотопливные брикеты. Это биоотходы, сырьем для которых является навоз или птичий помет. На основании разработанной технологии изготовление ведется путем просушки материала и дальнейшего его прессования. Другим вариантом твердого биотоплива являются гранулы, которые еще называются пеллетами. Для их производства используются отходы древесины в виде опилок, коры или щепы, а также может применяться солома.
  2. Жидкое. Сюда относятся такие вещества как биобутанол и биометанол, которые получаются из растительного сырья: хлопка, водорослей, рапса, сои. Полученное топливо используется для заправки двигателей.
  3. Газообразное. Это биогаз и биоводород. В первом случае сырьем выступают бытовые отходы, водоросли или трава. Биоводород получается путем проведения биотехнологических, биохимических или термохимических реакций.

Использование альтернативных источников энергии относится к настоятельной необходимости. Человечество с каждым годом потребляет все больше ресурсов, и этот процесс постоянно возрастает. Если сейчас не задуматься о будущем, то такое положение дел может закончиться катастрофой. Именно поэтому нужно переходить от классики до инноваций, о чем очень хорошо рассказывается в нашей работе.


ИСТОЧНИК ФОТО: ASNinfo

Подписывайтесь на нас: