Современное мостостроение в России
Мостостроение является одним из важнейших направлений инфраструктурного развития нашей страны. России нужны как дороги, так и современные надежные мосты, способные обеспечить безопасное и комфортное движение транспорта.
Сегодня отечественные архитекторы при строительстве мостов применяют новейшие инженерные решения, технологии и материалы. Их проекты становятся не просто функциональными элементами инфраструктуры, но и выглядят как настоящие произведения архитектурного искусства, украшающие облики российских городов.
Современные технологии возведения мостов
В сравнении с другими строительными отраслями мостостроение и по сей день остается одним из самых консервативных направлений. Это вызвано не столько отсутствием новшеств (они, безусловно, есть), сколько долгим согласованием, внедрением и проверкой любых новых решений. Безопасность по-прежнему стоит в приоритете.
Материалы
И все же положительные изменения есть. И в первую очередь они заметны в области используемых материалов.
Бетон
Еще 20 лет назад базовым стройматериалом являлся бетон. Он имел два неоспоримых преимущества: прочность и долговечность. Дополнительным бонусом шли универсальность, относительная дешевизна и низкие затраты на техническое обслуживание
Бетон может принимать различные формы, что позволяет реализовать любые архитектурные решения. Он до сих пор является одним из наиболее доступных строительных материалов в плане цены, особенно при наличии близлежащих источников сырья. И наконец, бетонные мосты требуют меньших затрат на ремонт и содержание, в сравнении с конструкциями из других материалов.
Главным недостатком материала является его тяжеловесность. Массивные бетонные мосты оказывают значительную нагрузку на грунт, что при определенных условиях усложняет их возведение. Например, при строительстве бетонного моста через реку для повышения судоходности нередко требуется увеличить длину пролетов между опорами. Именно вес конструкции становится основным препятствием для реализации этой идеи.
Сверхлегкий бетон
Сверхлегкий бетон — это специальный вид бетона, который обладает более низкой плотностью по сравнению с обычным бетоном. Благодаря этому существенно снижается нагрузка на фундаменты и опоры мостов.
Несмотря на низкую плотность, за счет применения специальных добавок и армирования сверхлегкий бетон обладает достаточно высокой прочностью на сжатие (до 60 МПа). То есть снижение общего веса конструкции происходит не за счет ущерба ее прочности.
Также стоит отметить устойчивость к воздействию агрессивных факторов окружающей среды. Легкий бетон коррозиестоек. К тому же малый вес материала значительно облегчает транспортировку и монтаж.
Нанокомпозиты
Нанокомпозитные материалы привлекают своими отличными эксплуатационными характеристиками. В чистом виде это добавки вроде молибдена и ванадия. При введении их в состав стальной арматуры они усиливают ее прочность, повышают стойкость к воздействию внешних температур.
Как известно, низкие температуры воздействуют на микроструктуру этого материала, делая его более хрупким. Добавление в состав нанокомпозитов решает эту проблему. Из такой стали изготавливается арматура, отдельные элементы моста, сварные конструкции.
Нанокомпозиты могут вводиться в состав бетона или использоваться в процессе сварки. Например, присадки, содержащие кальций и магний, уменьшают размер ферритных и цементитных фаз стали, делая соединение более прочным и долговечным
Стеклопластик
Стеклопластиковые конструкции значительно легче традиционных железобетонных или металлических аналогов. Это позволяет снижать нагрузки на мостовые опоры и фундаменты. К тому же стеклопластик устойчив к коррозии, старению, истиранию и внешним воздействиям.
Благодаря малому весу (менее 20% от веса железобетона) и модульной конструкции, стеклопластиковые элементы мостов легче транспортировать и собирать на объекте. Первый автомобильный мост из стеклопластика был возведен в России еще в 2014 году. С тех пор материал все чаще применяют в российском мостостроении в качестве альтернативы ряда железобетонных элементов.
Однако инновационными решениями изобилует не только материалы.
Префабрикация
Современные мостостроение все чаще использует метод префабрикации. Его суть заключается в переносе части строительных процессов на завод, где заранее изготавливаются конструкции или их отдельные части, которые затем доставляются на строительный объект.
Такой подход позволяет:
- сократить сроки строительства;
- повысить качество изготовления за счет использования сверхлегких материалов;
- снизить затраты;
- уменьшить зависимость от погодных условий (на сборку в заводских условиях не влияет погодный фактор);
- повысить безопасность (снижаются риски, связанные с работой строителей на высоте).
Именно использование новых композитных материалов предоставило возможность чаще использовать метод префабрикации. Уменьшение веса конструкций, узлов и отдельных мостовых элементов позволило обеспечить их последующую транспортировку к объекту, что в случае с железобетоном не представлялось возможным.
Чаще всего на заводах, собирают следующие виды префабрикатов:
- пролетные строения мостов;
- опоры и фундаменты;
- подпорные стены;
- парапеты и ограждения;
- дорожные плиты.
Использование метода префабрикации позволяет значительно повысить эффективность строительства мостовых сооружений.
Новейшая техника
Инновационные технологии мостостроения сложно представить без использования новейшей прогрессивной техники. Одним из таких примеров является гигантский мостоукладчик SLJ900/32.
Это уникальная китайская разработка, предназначенная для быстрого возведения больших мостовых пролетов. Мостоукладчик был создан компанией Wowjoint Machinery специально для проекта возведения группы мостов при строительстве дороге из Пекина в Монголию.
Вес машины — 580 тонн. Длина — 90 метров, высота — 9, а ширина — более 7. Мостоукладчик может осуществлять работу с бетонными блоками массой до 9 тысяч тонн. Его конструкция состоит из огромной самоходной стрелы, установленной на специальном шасси с 48 колесами. Стрела способна поворачиваться на 360 градусов.
Интересен и принцип работы мостоукладчика SLJ900/32:
- Предварительно на разных концах будущего моста устанавливаются опоры.
- Мостоукладчик подъезжает к началу пролета и поднимает с помощью стрелы огромные сборные секции моста весом до 1800 тонн.
- Аккуратно перемещая стрелу, мостоукладчик устанавливает эти секции на опоры, формируя пролет.
Таким образом, SLJ900/32 может сооружать мостовые пролеты длиной до 300 м.
Использование мостоукладчиков значительно сокращает время строительства моста, позволяет сэкономить на трудоресурсах, дает возможность возводить мостовые сооружения в труднодоступных районах. В России только присматриваются к использованию мостоукладчиков, производя все работы, связанные с возведением мостов традиционным методом с помощью кранов.
Новые методы мониторинга
Ключевым фактором, обеспечивающими безопасность и надежность мостов, является мониторинг процесса их возведения.
Для этого устанавливаются датчики для отслеживания деформаций, напряжений, нагрузок и вибрации, проводятся регулярные инспекции по оценке состояния ключевых элементов, контролируется воздействие внешних факторов.
В последние годы все чаще применяются БПЛА, которые позволяют получать визуальную информацию с труднодоступных или опасных для человека участков конструкции. Аппараты также используются для регулярной высокочастотной съемки, позволяющей отслеживать ход строительных работ и изменения в состоянии конструкций. На основе материала создаются 3D-модели и ортофотопланы, которые помогают строителям точно оценить геометрические параметры моста.
Применение БПЛА существенно повышает эффективность контроля за ходом строительства, обеспечивая высокую точность, безопасность и оперативность обследований.
Инновационные конструктивные решения
Если говорить о конструктивных решениях, то первое, что приходит на ум – это участившееся строительство висячих и вантовых мостов для больших пролетов.
Первые представляют собой конструкцию с основным несущим элементом в виде гибких железобетонных кабелей, подвешенных между опорами. Они образуют параболическую или каскадную форму, поддерживая проезжую часть моста. Главными преимуществами таких сооружений является минимальный расход материалов, эстетичность и возможность преодоления очень больших пролетов (до 2000 м).
Вантовый мост состоит из высоких пилонов, от которых к проезжей части отходят наклонные стальные тросы-ванты. Они воспринимают нагрузку и передают ее на пилоны, обеспечивая жесткость конструкции. Русский мост во Владивостоке является примером удачного возведения подобной инженерной конструкции.
Инновации заметны и в сфере традиционного мостостроения. Здесь инженеры активно работают над эффективными конструкциями опор, способными противостоять сейсмическим нагрузкам и экстремальным воздействиям.
Отдельно стоит упомянуть применение шок-трансмиттеров. После решения строить Крымский мост, возник резонный вопрос о возможной сейсмической и динамической нагрузке на конструкции сооружения. Трансмиттеры, установленные между опорами и пролетами моста, обеспечивают небольшое смещение последних при воздействии высоких температур и равномерно распределяют нагрузку между опорами при землетрясении.
Основные этапы строительства
Процесс возведения моста требует тщательного планирования. Поэтому любая стройка начинается с предпроектных исследований. Как правило, они включают инженерно-геологические изыскания, оценку гидрологических условий и предварительные расчеты нагрузок и прочности.
Специалисты изучают топографические карты района, геологические отчеты, оценивают рельеф, гидрогеологические условия, строение грунтов. Также возможно проведение геофизических исследований и испытание грунтов (статическое и динамическое зондирование, пробные нагрузки).
Проектирование
При создании проекта сначала разрабатывается конструктивная схема моста. Определяется тип мостового сооружения (балочный, арочный, висячий, вантовый), его высота, длина моста и пролетов, тип и конструкции опор.
На этапе проектирования подбираются материалы, производится расчет и проектирование фундаментов и опор. Обязательно разрабатывается проектная и рабочая документация.
Начало работ
Подготовительный этап начинается с расчистки и планировки строительной площадки, устройства подъездных путей и временных сооружений. Дополнительно организуются складские и бытовые помещения.
Тип фундамента определяется еще на этапе проекта. В зависимости от условий грунта это может быть ленточный, свайный, плитный или буронабивной фундамент. Далее следуют работы по возведению опор (бетонных, металлических или комбинированных) или установка анкерных систем для висячих и вантовых мостов. Все зависит от того какая конструкция возводится.
Монтаж пролетных строений или установка вант
Сборка металлических или железобетонных ферм может осуществляться как на месте стройки объекта, так и непосредственно на заводе-изготовителе. После их закрепления начинается этап монтажа пролетов (чаще всего методом надвижки). По окончании настилается дорожное полотно, устанавливаются перила и ограждения.
При возведении вантовых конструкций монтируются высокопрочные тросы, натягиваются и закрепляются на опорах кабели, а вантовые элементы присоединяются к пролетным строениям.
Завершающие работы
На заключительном этапе строятся подходы к мосту, организуется освещение, наносится дорожная разметка, устанавливаются знаки.
Обязательно проводятся пусконаладочные работы, статические и динамические нагрузочные испытания.
Проблемы современного мостостроения
Одной из базовых проблем мостостроения в России всегда были сложные геологические и климатические условия. На внушительной части нашей страны присутствуют вечномерзлые, заболоченные, заторфованные и другие виды неустойчивых грунтов.
Ряд регионов характеризуется сейсмической активностью. Погоду определяет континентальный климат с перепадами температур, заморозками и оттепелями. Кроме того, большинство рек зимой замерзает, а, как известно, ледообразование требует дополнительной защиты мостовых конструкций. Возведение мостов в таких условиях существенно усложняет работу инженеров и увеличивает стоимость строительства.
Вторая проблема, связана с возведением вантовых мостов. В России отсутствует национальный стандарт по их проектированию. В связи с этим возникают вопросы, связанные с безопасностью эксплуатации самих мостов, долговечности используемых материалов. Отсутствие единых принципов и методов проектирования вантовых мостов усложняет их строительство и эксплуатацию и мешает оптимизировать затраты, связанные с организацией строительства.
Также в России нет стандарта по использованию несъемной сталефибробетонной опалубки при возведении пролетов монолитного типа. Сталефибробетон известен своей повышенной трещиностойкостью. К тому жен он позволяет сократить сроки работ и трудозатраты на проект. Бетон этого вида применяется в мостостроении для увеличения несущей способности и повышения устойчивости к деформациям.
Недостаток производства полимерных композиционных материалов – тоже является одной из проблем современного мостостроения. Их дефицит ограничивает возможность использования новейших конструкций и форм мостовых сооружений, увеличивает сроки строительных работ в сравнении с другими странами.
Импортозамещение в строительстве мостов
Международные санкции достаточно сильно повлияли на сферу российского мостостроения. Рынок покинула американская компания «Maurer», производившая деформационные швы, норвежские и немецкие производители антикоррозийных системы защиты. Однако им на место пришли российские компании с менее известными именами, но качественной продукцией, которая почти не уступает импортным аналогам.
У ряда строительных организаций возникли проблемы с обслуживанием уже имеющейся спецтехники «New Holland», «JCB», «Liebherr», «Bauer». Решением стали поставки деталей и техники через ОАЭ, Казахстан и Армению. Конечно, цена закупок и сроки поставок увеличились, но не то, чтобы очень критично.
Большой выбор мостостроительной техники предлагает Китай. При этом в плане качества и надежности спецтехника из Поднебесной мало в чем уступает европейцам и американцам. Российские производители также увеличили выпуск буровых установок, гидроподъемников и автовышек.
Оснащение для вантовых мостов долгие годы закупалось в Швейцарии и Франции. Например, ванты для знаменитого Русского моста во Владивостоке поставляла французская компания Freyssinet. В настоящее время мостовые канаты закрытого типа производятся на российском предприятии «Северсталь», а системы преднапряжения выпускаются компанией «СТС» (Современные Технологии Строительства).
Выпуск шпунтовых свай налажен на предприятиях концерна «Северсталь». Холодногнутые шпунты позволяют снизить стоимость строительства почти на 30%, а многогранные можно использовать даже в Арктической зоне.
Инновационные проекты
Одним из самых амбициозных и обсуждаемых проектов является массовое возведение алюминиевых мостов. В Европе подобные искусственные сооружения возводятся с 1990 года, в России первый алюминиевый мост был построен еще в 1969 году в Ленинграде. При этом последние его исследования показали, что даже спустя более чем полвека, ни его несущая способность, ни отдельные элементы не пострадали.
С 2017 года в России было возведено несколько пешеходных мостов, однако к строительству автодорожных видов еще не приступили. Их возведение требует модернизации нормативной базы. Так, в 2019 году Минстрой РФ принял по алюминиевым мостам свод правил СП 443.1325800.2019, теперь же изменений ждут своды и нормативы, регулирующие процессы монтажа и обследования.
Строительство алюминиевых мостов в России активно поддерживается на государственном уровне как эффективный способ развития инфраструктуры в труднодоступных районах и на территориях Арктической зоны.
Со знаком плюс
В 2023 году, по оценке участников рынка, наблюдался уверенный рост спроса на теплоизоляционные материалы. В наступившем году положительный тренд также должен сохраниться, но многое будет зависеть от внешних факторов, влияющих на строительную отрасль.
Российский рынок теплоизоляционных материалов (ТИМ) в 2023 году, несмотря на некоторые опасения представителей отрасли, вырос. Данный тренд был обусловлен продолжающимся увеличением объемов ввода многоквартирных домов и ИЖС, промышленных и коммерческих объектов и т. д. По некоторым видам ТИМ, отмечают производители, в отдельные месяцы спрос превышал предложение.
Реакция на гиперспрос
Прошедший 2023 год, рассказывает генеральный директор ППК ТЕХНОНИКОЛЬ Владимир Марков, для рынка теплоизоляционных материалов прошел под знаком роста. Для первого полугодия прошлого года был характерен ажиотажный спрос на все виды теплоизоляционных материалов, к концу 2023 года рынок стабилизировался. Позитивно на рынке сказалось и продление сезона: за счет теплой осени стройки продолжались практически по всей стране.
«По нашим оценкам, объем рынка ТИМ в 2023 году вырос на 13%. Наибольший рост среди видов теплоизоляции продемонстрировала каменная вата: + 7%. В денежном выражении это порядка 182 млрд рублей. В пятерку наиболее востребованных теплоизоляционных материалов входят каменная вата, стекловата, XPS, EPS и PIR. При этом сегмент промышленного и гражданского строительства (ПГС) рос более высокими темпами, чем коттеджного и малоэтажного (КМС). Потребление в ПГС увеличилось на 10%, в КМС — на 5%», — добавил он.
Схожие, но и частично свои выводы по ситуации рынка в 2023 году делают и другие его участники. Наша команда аналитиков, комментирует директор компании КНАУФ Инсулейшн Павел Вишняков, оценивает рост рынка всех теплоизоляционных материалов на уровне 5–7%, тогда как рост на рынке легкой изоляции составил до 12%. Связано это с тем, что динамика в сегменте индивидуального жилищного строительства (ИЖС) значительно опережает рост строительства многоквартирных домов (МКД) и сегмент коммерческого строительства. Это и явилось причиной дефицитного состояния рынка в прошлом году.
«Спрос на продукцию был достаточно высоким, на уровне 2021 года. Многие производители после подведения итогов 2022 года, которые оказались, мягко говоря, неудовлетворительными, остались не готовы к динамичному восстановлению рынка и росту потребительского спроса в 2023-м. Крупнейшие поставщики не сформировали в низкий сезон дополнительные складские запасы, более того, запланировали длительные остановки для проведения ремонтных работ и технического обслуживания производственных линий», — пояснил Павел Вишняков.
По словам генерального директора Торгового дома HOTROCK Елены Пашковой, пессимистичные ожидания рынка в конце 2022 года не оправдались. Уже во втором квартале участники рынка столкнулись с гиперспросом на теплоизоляционные материалы, в результате чего практически все производители были вынуждены вводить квоты. Как итог — пустые склады, задержки поставок и рост цен на материалы. Одновременно с этим производителям приходилось быстро адаптироваться к росту цен на сырье, удлинению сроков поставок, нехватке квалифицированного персонала и заметному удорожанию транспортной логистики. «В 2023 году, — добавила Елена Пашкова, — завод HOTROCK успешно завершил реконструкцию, благодаря чему в этом году будет кратно увеличен объем выпуска. В ходе обновления была внедрена технология получения расплава на двух разных плавильных агрегатах с последующим совмещением в единую производственную линию. Это решение уникально не только для России, но и для мирового рынка».

Можно и больше
По мнению руководителя департамента маркетинга и рекламы ГК «Мосстрой-31» Михаила Волконского, определенная незагруженность производств полимерной теплоизоляции в настоящее время все же наблюдается. Производства могут выпускать практически в два раза больше того, что сейчас потребляет рынок. «Одной из причин малого потребления полимерной теплоизоляции является пробуксовка закона об энергоэффективности зданий. Все здания, особенно многоквартирные дома, должны утепляться. В основном это происходит с новостройками. Они действительно утепляются, а вот дома, которые подлежат капитальному ремонту, практически не утепляются, а у нас в России это более двух миллиардов квадратных метров. Проводятся иные, не менее важные работы, а вот про утепление забывают. В итоге, — отмечает представитель рынка, — очень часто мы можем видеть такую картину: многие собственники квартир нанимают верхолазов, которые проводят работы по утеплению фасада той или иной квартиры. В результате мы можем наблюдать жилой дом с нашлепками из теплоизоляции, что делает внешний облик дома нелицеприятным. Но люди мерзнут, поэтому вынуждены производить такие работы по утеплению своих квартир».
Другими словами, добавляет Михаил Волконский, если бы при проведении капитального ремонта МКД в перечень обязательных услуг входили бы работы по утеплению фасадов, кровель и т. п., то загрузка отрасли теплоизоляции значительно возросла. Плюс обязательное информационное и техническое сопровождение о безопасности, целесообразности применения полимерной теплоизоляции конечных потребителей — разумеется, при соблюдении всех норм и требований при проектировании и проведении строительно-монтажных работ.
Со сдержанным оптимизмом
Несмотря на позитивные тенденции на рынке, его участники осторожны в прогнозах на 2024 год. Некоторое торможение спроса, считают они, может произойти из-за экономических и политических факторов на объемы строительства и производство теплоизоляционных материалов в целом. Впрочем, рынок ТИМ все равно должен оставаться в плюсе.
«Мы со сдержанным оптимизмом смотрим в 2024 год, анализируя тенденции уходящего года, прогнозируем динамику рынка на уровне до + 5%, где основным фактором роста легкой изоляции будет спрос в сегменте коттеджно-малоэтажного строительства, коммерческих нежилых зданий, объектов рекреационной инфраструктуры и фонд капитального ремонта», — отмечает Павел Вишняков.
По словам Владимира Маркова, в 2024 году есть все основания для положительных прогнозов. Драйверами по-прежнему останутся жилищное строительство и развитие инфраструктурных объектов, включая транспортно-дорожное строительство.
«Замедляющим фактором станет повышение ключевой ставки, которое случилось в конце 2023 года. Оно снизило доступность кредитов. С другой стороны, объем выданных ипотечных займов в конце 2023 года говорит о том, что эти средства появятся на рынке как раз в начале 2024-го. Таким образом, мы увидим эффект отложенного спроса. Если государство сохранит программы поддержки, региональные ипотеки, специальные условия для отдельных профессий, то это также позитивно скажется на строительном рынке в целом и на рынке ТИМ в частности», — резюмирует генеральный директор ППК ТЕХНОНИКОЛЬ.
Геофизические исследования
Чтобы получить полную надежную информацию о территории, где планируется располагать сооружение или бурить скважину, требуется провести геофизические изыскания. Такие работы предполагают исследование рельефа местности и присутствующего здесь грунта. В результате появляется информация о разрезе слоев земли и даются оценки возможности ведения запланированных работ. Также появляется возможность определять наличие на глубине полезных ископаемых. Геофизические исследования относятся к разновидности инженерных изысканий, о которые более подробно можно прочитать здесь.
Назначение исследований
В процессе геофизических исследований получаются точные сведения о характере недр территории, где планируется ведение строительных работ. Одновременно уточняется присутствие воды в этом месте, поскольку она может стать источником опасности. Кроме того, геофизические изыскания проводятся с целью решения следующих задач:
- наличие пустот, которые могут присутствовать в расположенных здесь породах;
- возможное возникновение оползней из-за повышенной влажности грунта;
- присутствие на территории проложенных коммуникаций;
- выявление связей между слоями земли;
- присутствие в недрах возможных углеводородных соединений или других полезных ископаемых.
Все эти изыскания совершаются с применением различных методов, а для работы используется сложное оборудование. Некоторые приборы основываются на создании электрических и магнитных полей, которые проникают внутрь грунта для получения необходимых сведений о его характере. Часто такая информация позволяет понять возможность проведения земляных работ. Если территория не отвечает нужным требованиям, планы меняются, что ведет к экономии средств, которые могли быть потрачены впустую. После окончания проведения геодезических исследований формируется база данных, позволяющая начать строительство с гарантированным качественным результатом.
Порядок проведения работ
Геофизические испытания проводятся на основании четко разработанного плана, который включает в себя следующие этапы:
- Подготовительный.
- Полевой.
- Камеральный.
Как только все этапы будут пройдены, с учетом полученных результатов составляется отчет. В нем проводится анализ деятельности, совершенной на данной территории. Это отражается в документе, содержащем сведения о результатах анализов снятых проб, проведенных в лабораторных условиях.
Геофизические изыскания совершаются в соответствии с существующим законодательством, поэтому у компаний, занимающихся такой деятельностью, обязательно должна быть лицензия. Именно она дает ей право проводить такого рода работы. Все окончательные результаты затем передаются заказчику.
Большое количество информации о потребности проведения изысканий и ее этапах содержится в этой статье. Здесь хорошо рассказывается о возможных рисках, присутствующих во время возведения сооружений или бурении скважин при отсутствии нужных сведений.
Подготовительный этап
Данный этап еще называется проектным. Начинается он с обращения клиента к геофизикам. После получения технического задания специалисты начинают работу с архивными документами. С этой целью ищется и рассматривается вся существующая документация, относящаяся к территории, на которой планируется разработка объекта. Делается для того, чтобы провести детальный анализ имеющихся сведений.
На данном этапе с помощью архивных данных уточняется характер присутствующих на территории грунтов, чтобы спланировать методы будущей работы. Они могут быть песчаные или суглинистые, и эти сведения очень важны для раскопок.
Кроме работы с архивными документами, геофизиками посещаются надзорные органы, чтобы получить у них разрешение для проведения съемки местности.
На проектной стадии прогнозируется вероятность рисков проведения геофизических исследований. Все существующие районы разделяются на 3 группы:
- опасные;
- с возможно существующей опасностью;
- безопасные.
Чтобы дать по возможности точный ответ степени риска, используются карты, в которых указывается распространение опасных геологических процессов. Имея эти сведения, разрабатываются методы будущих геофизических исследований.
В заключении ведется составление сметы будущих геофизических работ. Для этого существуют специальные нормативные документы, где расписывается весь объем исследований, проводимый во время инженерных изысканий. На основании согласованной сметы составляется календарный план. Обычно все работы длятся на протяжении 2 месяцев. На этом подготовительный этап геофизических исследований подходит к концу.
Полевые работы
Как только все работы на предварительном этапе завершаются, начинается вторая стадия геофизических исследований. Ведется согласование количества задействованных сотрудников и необходимого транспорта для выполнения полевых исследований. Затем собранный отряд выезжает на объект со всем оборудованием. Работы здесь проводятся по заранее отработанным методикам, которые бывают следующих основных видов:
- сейсморазведка;
- гравиразведка;
- магниторазведка;
- электроразведка;
- ядерная геофизика;
- терморазведка.
Иногда используются и другие способы геофизических исследований, но они не являются распространенными, поэтому применяются значительно реже. В процессе выполнения работы на месте изучается территория. Выражается это в составлении топографической съемки местности с целью изучение ее рельефа и уточнения наличия подземных вод. На основании полученных данных составляется схема расположения возвышенностей и низин местности. Вся эта информация является предварительной, поэтому тщательно собирается для дальнейших лабораторных исследований, чтобы после их окончания сделать окончательные выводы.
Работа заканчивается составлением технического отчета с подробным анализом результатов изысканий, проведенных на исследуемой территории. Информация выкладывается в текстовом и графическом форматах. В отчете обязательно присутствует информация о наличии лицензии у организации, занимающейся геофизическими исследованиями.
Камеральная работа
Вся полученная в ходе полевых работ информация систематизируется и только потом заносится в документацию. Происходит это в три этапа:
- Сначала все собранные данные в ходе полевых работ обрабатываются. В случае необходимости создаются предварительные модели или карты для изучения проходящих внутри земли процессов. Для облегчения работы используются специальные технологии и инструменты. Они включают в себя лазерное сканирование или изучение спутниковых снимков.
- Происходит анализ данных с использованием геохимических, гидрогеологических или геофизических методов. На основании полученных результатов определяется свойство исследуемых пород, их структура и возраст. Также на этой стадии уточняются возможные риски, выражающиеся в опасности возникновения землетрясений или смещения горных пород.
- Заключительный этап камеральных работ включают в себя создание окончательных карт и моделей объектов. Делается это с целью получения точных представлений о проходящих на данной территории земли процессах.
Камеральная работа также включает в себя изучение всех проложенных в земле коммуникаций. Если их расположение неудачное, то в топографический план вносятся поправки. Однако такая работа требует согласования.
Сейсморазведка
Метод сейсморазведки основывается на исследовании объекта с использованием свойств упругих колебаний. Связано это с тем, что в различных средах они распространяются с определенной скоростью. Это зависит от плотности горных пород, их пористости и глубины залегания. В процессе пробега волн с помощью приборов они улавливаются, и все данные регистрируются сейсмографами. В результате появляется возможность установить границы залегания определенных пород и их характер.
Используя сейсморазведку, решаются геофизические задачи с высокой степенью точности. Такой метод считается трудоемким и очень дорогостоящим, поскольку для работы задействуются сложные приборы. Однако данный способ полностью себя оправдывает, поскольку дает хорошие результаты для разведки месторождений расположения нефти и газа.
Геологическая среда характеризуется неравномерностью своего расположения, поэтому во время прохождения волн наблюдается их отражение, преломление и поглощение. Благодаря такому эффекту, а также изменению скорости прохождения волн, появляется возможность проводить исследования территории и получать все необходимые результаты.
Гравиразведка
Под гравитационным способом, который еще называют гравиметрическим методом, понимается исследование литосферы, ее строение и поиск в ней полезных ископаемых. Данная разведка основывается на характере работы гравитационного поля земли. В данном случае за базовый параметр берется такая величина как ускорение свободного падения тела. Данный параметр известен давно, но только в последние 50-70 лет получилось достичь высокой точности измерения этого значения. Фиксируется величина с помощью специальных приборов, предназначенных специально для этих целей. Данный метод основывается на изменении параметра ускорения свободного падения тел с учетом особенностей Земли. Это обуславливается различной формой ее поверхности и внутренним строением. Также на величину свободного падения влияет различная плотность слоев Земли и расположение горных пород.
Гравитационная разведка отличается большой производительностью, ее применение выражается высокими качественными результатами. Используя такой способ, появляется возможность вести исследования на различную глубину, которая может составлять десятки метров и такое же количество километров. Это особенно удобно, когда требуется изучить слои Земли, расположенные очень далеко от поверхности.
Магниторазведка
Магнитная разведка носит еще название магнитометрического метода. Его использование ведется на основе существующего магнитного поля Земли. Такое явление было известно давно, но только в последнее время магниторазведка стала использоваться для решения задач геофизических исследований.
Суть метода состоит в том, что Земля является космическим телом, внутри которого формируется нормальное магнитное поле. На практике оно еще носит название первичное. В недрах земли присутствуют горные породы, и многие руды обладают магнитными свойствами. В результате их взаимодействия с магнитным полем Земли происходит процесс намагничивания. Это приводит к созданию аномального магнитного поля, которое еще носит название вторичного. Задачи магниторазведки состоят в выделении вторичных магнитных полей из суммарных составляющих с целью их исследования.
Такой геофизический метод характеризуется высокой производительностью. С его помощью осуществляется разведка с целью нахождения железных руд. Кроме того, он находит широкое применение во многих других областях, поскольку дает наглядное представления о недрах земли. При любых строительных работах каждая организация хорошо понимает структуру слоев, где будет располагаться возводимый объект.
Электроразведка
Метод электроразведки также используется для геофизических исследований недр Земли. Однако в данном случае изучение происходит уже электромагнитных полей, которые формируются за счет проходящих естественных физико-химических и атмосферных процессов. Также они еще создаются искусственно, и на этом основывается суть метода электроразведки. Электромагнитные поля бывает двух видов:
- Установившиеся. Длительность импульса составляет больше 1 секунды.
- Неустановившиеся. Здесь этот параметр уже выражается в микросекундах.
В зависимости от существующих природных факторов данной местности и свойств отдельных горных пород, изменяется интенсивность естественных электромагнитных полей и их структура. Что касается естественных полей, то здесь кроме перечисленных факторов еще добавляется источник возбуждения.
Суть электроразведки заключается в изменении его интенсивности. В случае увеличения его мощности повышается глубинность разведки и расширяется территория по объему. В целом метод похож на магниторазведку, поскольку также фиксирует изменение направления и скорость движения сигнала, который отображается на установленных приборах. Способ отличается высокой эффективностью и дает возможности геофизикам получать нужную информацию о структуре слоев Земли.
Ядерная геофизика
Метод ядерной физики базируется на естественной радиоактивности горных пород. Такой способ позволяет вести изучение недр Земли только на небольшой глубине, поскольку ядерное излучение быстро поглощается окружающей средой. К ней относится воздух или любые рядом расположенные породы.
Работа по глубинному исследованию территории осуществляется с помощью гамма и эманационной съемки. В первом случае ведется изучение силы гамма-излучения. Во время эманационной съемки по исследованию альфа-излучения определяется уровень концентрации в почве радиоактивного газа.
При создании искусственной радиоактивности горные породы облучаются гамма-квантами или нейтронами, что позволяет быстро определить состав слоев земли и другие их свойства. Достигается это изменением уровня наведенного поля и методичным изменением его характеристик.
Используя метод ядерной физики, появляется возможность выявить на небольшой глубине существующие полезные ископаемые, а также определить их возраст. Также определяется, есть ли возможность на данной территории вести строительство объекта.
Терморазведка
Геотермическая разведка базируется в геофизических исследованиях на изучении существующего теплового поля Земли. Такое явления основывается на источниках тепла, которые могут быть как внешними, так и внутренними. Кроме того, тепловыми свойствами характеризуются еще горные породы. В процессе ведения исследований приборами регистрируются исходящие от земной поверхности инфракрасное и радиотепловое излучения. Кроме того, измеряется температура теплового потока. Изучение всех этих параметров дает информацию о характере слоев Земли территории данного района. В процессе ведения работы методом терморазведки осуществляются инфракрасные и радиотепловые съемки. Это позволяет выявлять не только существующие месторождения полезными ископаемыми, а также уточнять уровень расположения мерзлоты и глубину движения подземных вод. Данная информация отличается повышенной достоверностью и является очень важной в процессе ведения геофизических исследований.
Контроль геофизических изысканий
Чтобы полученные результаты отвечали всем необходимым требованиям и были достоверными, на конечной стадии проводится их контроль. Он совершается на основании поданного исполнителем отчета. Здесь изучается описание пород и результаты обследований, просматриваются ведомости сдачи собранных образцов. Также осуществляется выборочная проверка лабораторных анализов. Все выводы оформляются в письменном виде. Это выражается в составлении акта технического контроля.
Геофизические изыскания относятся к необходимым исследованиям грунта территории перед началом строительных работ или бурением скважин. Это позволяет всестороннее изучить местность с целью исключения рисков, связанных с подвижностью слоев земли или их оседанием.