Больше свободы для архитекторов. Опыт столичного стройкомплекса для общероссийского


11.04.2024 15:01

Характерной особенностью развития отечественного стройкомплекса последних лет стала череда крупных и все более сложных проектов, которые открывали здесь дорогу для других, еще более нестандартных объектов. Такими были мостовые проекты Петербурга в 2010-е годы: Западный скоростной диаметр задал новые стандарты качества для всех мостов страны, стал залогом качества моста в Крым и сооружений М-11 и М-12. При этом ключевую роль играла ставка на новые технологические решения, когда архитектурное бюро и проектировочная организация совместно творчески выходят на новый уровень строительства. Так, организация «Гипростроймост», показав свои возможности на мостах во Владивостоке в начале века в конце его второго десятилетия, блестяще решила проблему Крымского моста, задав стандарты качества для всех грандиозных мега-объектов страны.


Подобные процессы характерны и для гражданских объектов, смелые эксперименты с архитектурой которых на наших глазах раздвигают рамки архитектуры городских пространств. Так, создание первых крупных общественных объектов со сложной параметрической архитектурой, подобных современным аэропортам (см. комплекс Пулково, Домодедово) или паркам (см. Зарядье), открыло дорогу для уже десятков подобных объектов по всей стране. От западных рубежей России (музейный кластер Калининграда, Ржевский мемориал, «Новая Голландия») до тихих регионов в глубине страны (см. парк «Швейцария» в Нижнем Новгороде или парк «Малевич» в Одинцове) архитекторы получили новый инструментарий, и создание общественных пространств вышло на кардинальный новый уровень. Что же дальше?

Реконструкция стадиона «Олимпийкий» в Москве
Источник: Максим Кирсанов; пресс-служба АО ПромСтройКонтракт

Возможно, и сейчас мы можем прогнозировать территорию следующих «больших рывков» в архитектуре, наблюдая, где сейчас используются самые передовые технологии. Неожиданно в Москве в последние годы — это жилые и спортивные объекты. Среди главных проектов 2024 года в стране — два очень разных, но и похожих комплекса: новый Олимпийский стадион на севере столицы и целая череда крупных ЖК с уникальной архитектурой, самым необычным их которых является ЖК «Бадаевский». Перед разработчиками проектного решения последнего стояла задача, которая может показаться невыполнимой. Нужно было восстановить архитектурный ансамбль завода, оставив его видимым со стороны набережной, и при этом создать на территории новое жилье и общественные пространства. Традиционные методы не подходили: пристройки к объектам культурного наследия недопустимы, а окружение исторических корпусов новыми высотными зданиями разрушило бы целостность пространства. Однако решение было найдено — виртуозное и эффективное: проходящие сквозь этажи опоры высотой 35 метров обеспечивают максимальную жесткость всей конструкции. Благодаря плодотворному взаимодействию с проектным институтом для стыковки арматуры была применена технология производства ГК ПСК — механические соединения арматуры с конической резьбой, что позволило успешно реализовать данную задумку. Однако оптимизация коснулась не только этапа арматурных работ. Так, специально для необычных гигантских колонн, стен и других конструкций проекта в опалубке планируется к использованию специализированная фанера («СВЕЗА Монолит»), позволяющая гарантировать архитектурное качество получаемой бетонной поверхности. Здесь уже пригодился глобальный экспортный опыт компании SVEZA, которая в новом продукте для внутреннего рынка учитывала мировые достижения в области опалубочных поверхностей и обработки древесины. Так внедрение современных технологий позволило воплотить в реальность смелое архитектурно-конструкторское решение, которое ранее не применялось в жилищном строительстве. Возможно, это станет ключом к новой тенденции в отечественной архитектуре и из обеих столиц пойдет в регионы, позволяя преодолеть «серую» заурядность панелек, аляповатость постмодернистского «капиталистического романтизма» и другие устаревшие стили и открывая нашу страну для нового архитектурного ренессанса, подобного появлению советского конструктивизма сто лет назад.

ЖК «Бадаевский», основания 35-метровых колонн
Источник: Максим Кирсанов; пресс-служба АО ПромСтройКонтракт


ИСТОЧНИК ФОТО: Максим Кирсанов; пресс-служба АО ПромСтройКонтракт


В программном комплексе FROST 3D доступен расчет теплозащиты с XPS ТЕХНОНИКОЛЬ


19.05.2023 09:13

В пакете программ Frost 3D появилась возможность рассчитать теплозащиту инженерных сооружений при помощи XPS ТЕХНОНИКОЛЬ.  Этому способствовало тесное взаимодействие экспертов направления «Полимерная изоляция» ТЕХНОНИКОЛЬ и специалистов Научно-технического центра «Симмэйкерс», разработчика пакета программ для прогнозных расчетов при проектировании на многолетнемерзлых грунтах.


Программа Frost.Термо пакета Frost 3D позволяет создавать 3D геологическую модель грунтов любой сложности, после чего выполнять расчет температурного режима грунтов с учетом влияния зданий и сооружений, в том числе протяженных линейных объектов.

Наличие теплоизоляции ТЕХНОНИКОЛЬ в базе данных материалов дает возможность легко заложить расчетные параметры материала и определить оптимальный вариант защитных мероприятий для безопасной эксплуатации объектов на многолетнемерзлых грунтах.

С помощью программного комплекса Frost 3D можно проработать проектные решения и определить параметры применения экструзионного пенополистирола ТЕХНОНИКОЛЬ на многолетнемерзлых грунтах в следующих конструкциях: трубопроводы, земляное полото автомобильных и железных дорог, основания взлетно-посадочных полос, основания зданий и сооружений, шахты, тоннели, плотины и др. Все расчеты выполняются в соответствии с действующей нормативной документацией строительства.

В программу внесены расчетные характеристики всей линейки экструзионного пенополистирола ТЕХНОНИКОЛЬ, которые располагаются во вкладке Материалы базы данных материалов, физических свойств и условий теплообмена.

Источник: пресс-служба компании ТЕХНОНИКОЛЬ


ИСТОЧНИК: Пресс-служба компании ТЕХНОНИКОЛЬ
ИСТОЧНИК ФОТО: пресс-служба компании ТЕХНОНИКОЛЬ


Как проверить BIM-модели и избежать ошибок в строительстве


15.05.2023 10:01

Качественная BIM-модель — ключевой элемент при реализации строительных проектов. Она позволяет увидеть будущее сооружение еще до начала работ, спланировать их и убедиться в правильности проектных решений.


Проверка BIM-моделей

Не выявленные на ранних этапах ошибки могут привести к задержкам в строительстве, дополнительным затратам, а в некоторых случаях и к авариям на объекте.

Чтобы избежать этих проблем BIM-модель будущего объекта должна:

  • быть пригодной для использования на последующих этапах проекта;
  • отражать оптимальные проектные решения, отвечающие требованиям заказчика и нормативно-технических документов.

Очевидно, что для достижения этих целей, необходима тщательная проверка BIM-модели до начала ее использования: при определении стоимости строительства, планировании строительно-монтажных работ и других ответственных операциях.

Эффективное проведение таких проверок позволит:

  • минимизировать вероятность срыва сроков;
  • выявлять и исправлять неудачные проектные решения до начала строительно-монтажных работ;
  • оптимизировать использование материалов для экономии ресурсов;
  • обеспечивать возможность планирования строительно-монтажных работ на основе достаточных и достоверных данных;
  • минимизировать вероятности непредвиденного удорожания строительства.

Larix.Manager, разработанный компанией Айбим, позволяет автоматизированно проверить модель как на геометрические коллизии, так и на соответствие информационным требованиям заказчика (EIR) и требованиям нормативно-технических документов.

Этот программный продукт является частью платформы Larix, которая также включает в себя модули:

  • Larix.EST для формирования ведомостей объемов работ и бюджета строительства
  • Larix.CDB для ведения справочников видов работ
  • Larix.Tender для управления закупками
  • Larix.Contract для взаимодействия с подрядчиками и контроля выполнения обязательств

Larix.Manager может использоваться как в связке с другими модулями платформы, так и в качестве самостоятельного инструмента для аудита BIM-моделей.

 

Сводная BIM-модель

Larix.Manager позволяет собирать сводную (федеративную) модель из частных моделей, выполненных в различных САПР. Это дает возможность проверять решения как внутри одного раздела, так и выполнять междисциплинарные проверки. Ведь плохая координация между моделями различных разделов, выполняемых разными специалистами, отделами и даже проектными организациями, как раз и порождает большую часть ошибок, всплывающих на этапе строительства.

Larix.Manager принимает на вход модели в формате IFC, в который могут экспортировать практически все широко используемые САПР. Модели, выполненные в Autodesk Revit, Bentley, Renga и модели, собранные в Autodesk Navisworks, могут экспортироваться во внутренний формат Larix – IMC – с помощью специальных плагинов. Это позволяет исключить формирование промежуточного файла IFC между нативным форматом САПР и Larix.Manager и, как следствие, исключить возможную потерю и искажение данных, вызванных особенностями конвертации в IFC отдельными программными продуктами.

Но даже наличие модели с геометрией не обязательно для проведения некоторых автоматизированных проверок: в Larix.Manager можно загрузить книгу Microsoft Excel, в которой содержится информация о немоделируемых элементах и их параметрах, и выполнить проверку параметров элементов без геометрии.

Проверка параметров

Одним из важнейших критериев качества BIM-модели является корректность заполнения параметров. Их наличие и значения определяют, как можно использовать модель на последующих этапах проекта, насколько это будет эффективно.

Larix.Manager позволяет проверить наличие требуемых параметров у элементов, наличие у них значений и соответствие этих значений требованиям EIR, сводов правил и ГОСТ.

Текстовые параметры можно проверить на заполнение, содержание определенной последовательности символов, числовые – также и на соответствие значений определенному диапазону.

 

Проверка коллизий

В режиме «Проверка коллизий» можно отследить:

  • Пересечения. Например, пересечения элементов различных инженерных систем, отсутствие отверстий в стенах и перекрытиях и другие несоответствия, как правило, вызванные ошибками при моделировании и плохой координацией. Допуски пересечений можно задавать как по максимальному допустимому расстоянию, так и по максимально допустимому объему пересечения.
  • Дублирование. Поиск элементов с одинаковой геометрией и положением. Такие ошибки приводят к задвоениям при подсчете объемов работ, и их сложно найти визуально.
  • Минимальное расстояние. Поиск ошибок, выраженных в несоблюдении минимально допустимых расстояний между элементами. Например, несоблюдение нормативного расстояния между инженерными системами или недостаточная толщина слоя материала.
  • Минимальное расстояние в проекции. Проверка соблюдения минимального расстояния между элементами в плане (в проекции на горизонтальную плоскость). Часто в нормативных документах ограничивается расстояние в плановой проекции, а не в трехмерном пространстве. С помощью данной проверки можно найти, например, нарушения минимального расстояния между наружными инженерными коммуникациями, габаритов мостов и тоннелей по ширине, параметров поперечного профиля автомобильной дороги, расстояний от зон с особыми условиями использования территорий.
  • Расположение. Проверка вертикального расстояния между пересекающимися в плане элементами. Наряду с проверкой минимального расстояния и минимального расстояния в проекции помогает выявить проектные ошибки, выраженные в несоблюдении минимально допустимых расстояний. Также этот тип проверки позволяет найти такие трудные для обнаружения ошибки как неверное размещение элементов друг над другом (мокрое помещение над сухим, недостаточное возвышение низа пролетного строения моста над расчетным уровнем высоких вод).

Все описанные автоматизированные проверки реализуются с помощью гибко настраиваемых фильтров проверяемых элементов и условий проверки. Эти проверки сохраняются и загружаются из шаблонов, которые можно многократно использовать для моделей сооружений одного типа.

Результаты автоматизированных проверок формируются в отчеты в формате Microsoft Excel. Отчеты содержат в себе идентификаторы элементов, по которым к ним можно обратиться в программах разработки модели и в самом Larix.Manager. Отчеты по проверкам на коллизии сгруппированы по типам (пересечения, минимальное расстояние, проверка положения) и содержат эскизы элементов с обнаруженными коллизиями.

 

Визуальная проверка

К сожалению, не все можно проверить, пользуясь исключительно инструментами автоматизированного поиска ошибок. Многие проверки автоматизировать очень сложно или даже невозможно. Поэтому программный продукт, используемый для проверки BIM-моделей, должен также обладать удобными инструментами для визуального контроля.

Larix.Manager позволяет гибко управлять визуализацией BIM-модели:

  • Группировать элементы модели по значениям параметров и выстраивать дерево элементов любым удобным способом, отображая только элементы, необходимые для определенной задачи. Для различных целей можно создавать несколько типов группировки одной модели, сохранять их и применять, когда это необходимо.
  • Использовать инструменты скрытия, изоляции элементов, сечения.
  • Сохранять виды и добавлять комментарии к сохраненным видам, т.е. формировать замечания, выявленные в результате визуальной проверки.

 

Импортозамещение

Многие иностранные программные продукты, предназначенные для проверки BIM-моделей, например, Autodesk Navisworks и Solibri, ушли с российского рынка.

Со временем все труднее легально работать с зарубежным программным обеспечением. У многих компаний и вовсе нет возможности выбрать иностранные инструменты для работы ввиду специфики их объектов. Вопрос поиска отечественных инструментов взамен привычных зарубежных встает все острее.

Larix.Manager – полностью российская разработка, не использует Autodesk Forge и сервера, расположенные за пределами Российской Федерации. Это десктопное приложение, работающее с файлами на компьютере пользователя или сервере на усмотрение пользователя.


АВТОР: Дамир Ильясов
ИСТОЧНИК ФОТО: ASNinfo
РЕКЛАМА: bim-info.ru