Геофизические исследования

Чтобы получить полную надежную информацию о территории, где планируется располагать сооружение или бурить скважину, требуется провести геофизические изыскания. Такие работы предполагают исследование рельефа местности и присутствующего здесь грунта. В результате появляется информация о разрезе слоев земли и даются оценки возможности ведения запланированных работ. Также появляется возможность определять наличие на глубине полезных ископаемых. Геофизические исследования относятся к разновидности инженерных изысканий, о которые более подробно можно прочитать здесь.
Назначение исследований
В процессе геофизических исследований получаются точные сведения о характере недр территории, где планируется ведение строительных работ. Одновременно уточняется присутствие воды в этом месте, поскольку она может стать источником опасности. Кроме того, геофизические изыскания проводятся с целью решения следующих задач:
- наличие пустот, которые могут присутствовать в расположенных здесь породах;
- возможное возникновение оползней из-за повышенной влажности грунта;
- присутствие на территории проложенных коммуникаций;
- выявление связей между слоями земли;
- присутствие в недрах возможных углеводородных соединений или других полезных ископаемых.
Все эти изыскания совершаются с применением различных методов, а для работы используется сложное оборудование. Некоторые приборы основываются на создании электрических и магнитных полей, которые проникают внутрь грунта для получения необходимых сведений о его характере. Часто такая информация позволяет понять возможность проведения земляных работ. Если территория не отвечает нужным требованиям, планы меняются, что ведет к экономии средств, которые могли быть потрачены впустую. После окончания проведения геодезических исследований формируется база данных, позволяющая начать строительство с гарантированным качественным результатом.
Порядок проведения работ
Геофизические испытания проводятся на основании четко разработанного плана, который включает в себя следующие этапы:
- Подготовительный.
- Полевой.
- Камеральный.
Как только все этапы будут пройдены, с учетом полученных результатов составляется отчет. В нем проводится анализ деятельности, совершенной на данной территории. Это отражается в документе, содержащем сведения о результатах анализов снятых проб, проведенных в лабораторных условиях.
Геофизические изыскания совершаются в соответствии с существующим законодательством, поэтому у компаний, занимающихся такой деятельностью, обязательно должна быть лицензия. Именно она дает ей право проводить такого рода работы. Все окончательные результаты затем передаются заказчику.
Большое количество информации о потребности проведения изысканий и ее этапах содержится в этой статье. Здесь хорошо рассказывается о возможных рисках, присутствующих во время возведения сооружений или бурении скважин при отсутствии нужных сведений.
Подготовительный этап
Данный этап еще называется проектным. Начинается он с обращения клиента к геофизикам. После получения технического задания специалисты начинают работу с архивными документами. С этой целью ищется и рассматривается вся существующая документация, относящаяся к территории, на которой планируется разработка объекта. Делается для того, чтобы провести детальный анализ имеющихся сведений.
На данном этапе с помощью архивных данных уточняется характер присутствующих на территории грунтов, чтобы спланировать методы будущей работы. Они могут быть песчаные или суглинистые, и эти сведения очень важны для раскопок.
Кроме работы с архивными документами, геофизиками посещаются надзорные органы, чтобы получить у них разрешение для проведения съемки местности.
На проектной стадии прогнозируется вероятность рисков проведения геофизических исследований. Все существующие районы разделяются на 3 группы:
- опасные;
- с возможно существующей опасностью;
- безопасные.
Чтобы дать по возможности точный ответ степени риска, используются карты, в которых указывается распространение опасных геологических процессов. Имея эти сведения, разрабатываются методы будущих геофизических исследований.
В заключении ведется составление сметы будущих геофизических работ. Для этого существуют специальные нормативные документы, где расписывается весь объем исследований, проводимый во время инженерных изысканий. На основании согласованной сметы составляется календарный план. Обычно все работы длятся на протяжении 2 месяцев. На этом подготовительный этап геофизических исследований подходит к концу.
Полевые работы
Как только все работы на предварительном этапе завершаются, начинается вторая стадия геофизических исследований. Ведется согласование количества задействованных сотрудников и необходимого транспорта для выполнения полевых исследований. Затем собранный отряд выезжает на объект со всем оборудованием. Работы здесь проводятся по заранее отработанным методикам, которые бывают следующих основных видов:
- сейсморазведка;
- гравиразведка;
- магниторазведка;
- электроразведка;
- ядерная геофизика;
- терморазведка.
Иногда используются и другие способы геофизических исследований, но они не являются распространенными, поэтому применяются значительно реже. В процессе выполнения работы на месте изучается территория. Выражается это в составлении топографической съемки местности с целью изучение ее рельефа и уточнения наличия подземных вод. На основании полученных данных составляется схема расположения возвышенностей и низин местности. Вся эта информация является предварительной, поэтому тщательно собирается для дальнейших лабораторных исследований, чтобы после их окончания сделать окончательные выводы.
Работа заканчивается составлением технического отчета с подробным анализом результатов изысканий, проведенных на исследуемой территории. Информация выкладывается в текстовом и графическом форматах. В отчете обязательно присутствует информация о наличии лицензии у организации, занимающейся геофизическими исследованиями.
Камеральная работа
Вся полученная в ходе полевых работ информация систематизируется и только потом заносится в документацию. Происходит это в три этапа:
- Сначала все собранные данные в ходе полевых работ обрабатываются. В случае необходимости создаются предварительные модели или карты для изучения проходящих внутри земли процессов. Для облегчения работы используются специальные технологии и инструменты. Они включают в себя лазерное сканирование или изучение спутниковых снимков.
- Происходит анализ данных с использованием геохимических, гидрогеологических или геофизических методов. На основании полученных результатов определяется свойство исследуемых пород, их структура и возраст. Также на этой стадии уточняются возможные риски, выражающиеся в опасности возникновения землетрясений или смещения горных пород.
- Заключительный этап камеральных работ включают в себя создание окончательных карт и моделей объектов. Делается это с целью получения точных представлений о проходящих на данной территории земли процессах.
Камеральная работа также включает в себя изучение всех проложенных в земле коммуникаций. Если их расположение неудачное, то в топографический план вносятся поправки. Однако такая работа требует согласования.
Сейсморазведка
Метод сейсморазведки основывается на исследовании объекта с использованием свойств упругих колебаний. Связано это с тем, что в различных средах они распространяются с определенной скоростью. Это зависит от плотности горных пород, их пористости и глубины залегания. В процессе пробега волн с помощью приборов они улавливаются, и все данные регистрируются сейсмографами. В результате появляется возможность установить границы залегания определенных пород и их характер.
Используя сейсморазведку, решаются геофизические задачи с высокой степенью точности. Такой метод считается трудоемким и очень дорогостоящим, поскольку для работы задействуются сложные приборы. Однако данный способ полностью себя оправдывает, поскольку дает хорошие результаты для разведки месторождений расположения нефти и газа.
Геологическая среда характеризуется неравномерностью своего расположения, поэтому во время прохождения волн наблюдается их отражение, преломление и поглощение. Благодаря такому эффекту, а также изменению скорости прохождения волн, появляется возможность проводить исследования территории и получать все необходимые результаты.
Гравиразведка
Под гравитационным способом, который еще называют гравиметрическим методом, понимается исследование литосферы, ее строение и поиск в ней полезных ископаемых. Данная разведка основывается на характере работы гравитационного поля земли. В данном случае за базовый параметр берется такая величина как ускорение свободного падения тела. Данный параметр известен давно, но только в последние 50-70 лет получилось достичь высокой точности измерения этого значения. Фиксируется величина с помощью специальных приборов, предназначенных специально для этих целей. Данный метод основывается на изменении параметра ускорения свободного падения тел с учетом особенностей Земли. Это обуславливается различной формой ее поверхности и внутренним строением. Также на величину свободного падения влияет различная плотность слоев Земли и расположение горных пород.
Гравитационная разведка отличается большой производительностью, ее применение выражается высокими качественными результатами. Используя такой способ, появляется возможность вести исследования на различную глубину, которая может составлять десятки метров и такое же количество километров. Это особенно удобно, когда требуется изучить слои Земли, расположенные очень далеко от поверхности.
Магниторазведка
Магнитная разведка носит еще название магнитометрического метода. Его использование ведется на основе существующего магнитного поля Земли. Такое явление было известно давно, но только в последнее время магниторазведка стала использоваться для решения задач геофизических исследований.
Суть метода состоит в том, что Земля является космическим телом, внутри которого формируется нормальное магнитное поле. На практике оно еще носит название первичное. В недрах земли присутствуют горные породы, и многие руды обладают магнитными свойствами. В результате их взаимодействия с магнитным полем Земли происходит процесс намагничивания. Это приводит к созданию аномального магнитного поля, которое еще носит название вторичного. Задачи магниторазведки состоят в выделении вторичных магнитных полей из суммарных составляющих с целью их исследования.
Такой геофизический метод характеризуется высокой производительностью. С его помощью осуществляется разведка с целью нахождения железных руд. Кроме того, он находит широкое применение во многих других областях, поскольку дает наглядное представления о недрах земли. При любых строительных работах каждая организация хорошо понимает структуру слоев, где будет располагаться возводимый объект.
Электроразведка
Метод электроразведки также используется для геофизических исследований недр Земли. Однако в данном случае изучение происходит уже электромагнитных полей, которые формируются за счет проходящих естественных физико-химических и атмосферных процессов. Также они еще создаются искусственно, и на этом основывается суть метода электроразведки. Электромагнитные поля бывает двух видов:
- Установившиеся. Длительность импульса составляет больше 1 секунды.
- Неустановившиеся. Здесь этот параметр уже выражается в микросекундах.
В зависимости от существующих природных факторов данной местности и свойств отдельных горных пород, изменяется интенсивность естественных электромагнитных полей и их структура. Что касается естественных полей, то здесь кроме перечисленных факторов еще добавляется источник возбуждения.
Суть электроразведки заключается в изменении его интенсивности. В случае увеличения его мощности повышается глубинность разведки и расширяется территория по объему. В целом метод похож на магниторазведку, поскольку также фиксирует изменение направления и скорость движения сигнала, который отображается на установленных приборах. Способ отличается высокой эффективностью и дает возможности геофизикам получать нужную информацию о структуре слоев Земли.
Ядерная геофизика
Метод ядерной физики базируется на естественной радиоактивности горных пород. Такой способ позволяет вести изучение недр Земли только на небольшой глубине, поскольку ядерное излучение быстро поглощается окружающей средой. К ней относится воздух или любые рядом расположенные породы.
Работа по глубинному исследованию территории осуществляется с помощью гамма и эманационной съемки. В первом случае ведется изучение силы гамма-излучения. Во время эманационной съемки по исследованию альфа-излучения определяется уровень концентрации в почве радиоактивного газа.
При создании искусственной радиоактивности горные породы облучаются гамма-квантами или нейтронами, что позволяет быстро определить состав слоев земли и другие их свойства. Достигается это изменением уровня наведенного поля и методичным изменением его характеристик.
Используя метод ядерной физики, появляется возможность выявить на небольшой глубине существующие полезные ископаемые, а также определить их возраст. Также определяется, есть ли возможность на данной территории вести строительство объекта.
Терморазведка
Геотермическая разведка базируется в геофизических исследованиях на изучении существующего теплового поля Земли. Такое явления основывается на источниках тепла, которые могут быть как внешними, так и внутренними. Кроме того, тепловыми свойствами характеризуются еще горные породы. В процессе ведения исследований приборами регистрируются исходящие от земной поверхности инфракрасное и радиотепловое излучения. Кроме того, измеряется температура теплового потока. Изучение всех этих параметров дает информацию о характере слоев Земли территории данного района. В процессе ведения работы методом терморазведки осуществляются инфракрасные и радиотепловые съемки. Это позволяет выявлять не только существующие месторождения полезными ископаемыми, а также уточнять уровень расположения мерзлоты и глубину движения подземных вод. Данная информация отличается повышенной достоверностью и является очень важной в процессе ведения геофизических исследований.
Контроль геофизических изысканий
Чтобы полученные результаты отвечали всем необходимым требованиям и были достоверными, на конечной стадии проводится их контроль. Он совершается на основании поданного исполнителем отчета. Здесь изучается описание пород и результаты обследований, просматриваются ведомости сдачи собранных образцов. Также осуществляется выборочная проверка лабораторных анализов. Все выводы оформляются в письменном виде. Это выражается в составлении акта технического контроля.
Геофизические изыскания относятся к необходимым исследованиям грунта территории перед началом строительных работ или бурением скважин. Это позволяет всестороннее изучить местность с целью исключения рисков, связанных с подвижностью слоев земли или их оседанием.
Более трети россиян готовы сменить место жительства из-за шума

35% россиян считают высокую слышимость в квартире весомой причиной для переезда, выяснилось в ходе опроса[1], который провела компания ROCKWOOL Russia, производитель решений из каменной ваты. Какие звуки сильнее всего раздражают жителей многоквартирных домов и можно ли решить проблему без переезда?
Самыми надоедливыми источниками шума респонденты назвали уличный транспорт (22%), ремонтные работы (18%) и соседей (16%). Кроме того, россиян раздражают крики и топот чужих детей (8%), а также громкая музыка (5%).
«Чаще всего жители многоквартирных домов страдают от воздушных шумов (звуки музыки, речь, работающий телевизор). Они передаются из одного помещения в другое прямым путем, то есть через смежные стены и окна. Но нередко в квартирах приходится сталкиваться и с другими видами шума. Например, топот ног, падение тяжелых предметов ― это ударный шум, а ремонтные работы ― структурный. Особенность последнего в том, что он обычно распространяется косвенно - через несущие и конструктивные элементы здания. Именно поэтому вы можете слышать звук перфоратора, который работает через несколько пролетов от вашей квартиры. В зависимости от типа шума следует выбирать и способы защиты от него, но именно здесь большинство жильцов совершают ошибки», ― рассказывает Наталья Пахомова специалист по технической поддержке и обучению компании ROCKWOOL в России, производителя материалов для тепло- и шумоизоляции.
Так, чтобы избавиться от надоедливых звуков, 21% россиян используют мягкую мебель и ковры, 12% просто уходят в другую комнату, 10% пытаются как-то договориться с соседями, столько же перебивают неприятный шум музыкой. 5% и вовсе используют беруши.
«Мебель и ковры действительно являются звукопоглотителями и хорошо справляются с эхом в помещении, но их способность к снижению уровня шума очень мала. В том числе и потому, что ни ковры, ни мебель обычно не могут закрыть собой все пространство стены. Кроме того, такой способ спасает скорее от шума внутри квартиры, а не от наружного. Например, если постелить толстый ковер на пол, топот ног в этой комнате будет тише, но это не избавит вас от громкой музыки соседей снизу. Самый надежный способ решить проблему ― полноценная шумоизоляция специальными материалами, например, плитами из каменной ваты. Они обеспечивают снижение уровня воздушного шума на 43-62 дБ, что сопоставимо с шумом городского транспорта или громким детским плачем», ― объясняет Наталья Пахомова.
При этом полной шумоизоляцией квартиры (когда защищены все стены, пол и потолок) могут похвастать только 5% участников опроса. Еще у 36% шумоизоляция выполнена частично. По словам эксперта ROCKWOOL, такой вариант может обернуться пустой тратой денег. Дело в том, что проводником звука выступают абсолютно все поверхности в квартире. Кроме того, шум прекрасно проникает сквозь отверстия под розетки и коммуникации.
«Часто жильцы небольших квартир отказываются от полной звукоизоляции, так как боятся существенно сократить пространство из-за толщины материалов. Но и в такой ситуации есть выход: на рынке уже не один год существуют звукопоглощающие плиты толщиной всего 27 мм. Они не только защитят от шума, но и не “съедят” полезную площадь. К примеру, в линейке звукоизоляционных решений ROCKWOOL это плиты из каменной ваты Акустик УЛЬТРАТОНКИЙ: по эффективности они сопоставимы с традиционными звукопоглощающими наполнителями, которые почти в два раза толще. Проникающий шум снижается на 57 дБ», ― рассказывает Наталья.
Некоторые отказываются от звукоизоляции, чтобы удешевить ремонт квартиры. Однако цена вопроса не так высока, как может показаться. Например, для шумоизоляции стены площадью 20 квадратных метров плитами Акустик УЛЬТРАТОНКИЙ потребуется до 20 тысяч рублей. Это стоимость полного комплекта системы, в которую включены не только самая тонкая звукоизоляция из каменной ваты толщиной 27 мм, но и все системные компоненты, такие как гипсокартон, подвесы, профили и многое другое. Сделать точный расчет звукоизоляции для проекта можно при помощи специального бесплатного калькулятора, разработанного специалистами компании ROCKWOOL: он учитывает множество факторов и предлагает расчеты для стены и потолка, а также демонстрирует акустический эффект от установленной конструкции.
Важность акустического комфорта в современном мире сложно переоценить. Не случайно недавно Минстрой РФ усовершенствовал свод правил по защите от шума в жилых домах: акцент сделан на более эффективную звукоизоляцию перекрытий между этажей и изоляцию ударного шума с помощью современных материалов. Возможно, в будущем даже квартиры эконом-класса будут радовать полной тишиной, но пока дело лучше взять в свои руки. Ведь даже переезд в более комфортное жилье не гарантирует защиту от раздражающих звуков.
[1] Опрос проводился компанией ROCKWOOL 4-15 июля 2022 года, участие приняли 1437 человек, проживающих в многоквартирных домах
Эффективность однослойных кровель — быстро и надежно

В современных реалиях экономичность при выборе материалов выходит на первый план. В то же время крыша должна быть надежной и долговечной, чтобы оправдать вложения. «Ответом» на данный запрос стало решение с применением однослойной битумно-полимерной мембраны с механическим креплением. Расскажем, почему это кровельное решение становится популярным у строителей.
Какие материалы можно применять в один слой
При устройстве кровли на быстровозводимых зданиях очень важна доступность материалов и, конечно, надежность покрытия. Однослойная гидроизоляция становится оптимальным решением такой задачи.
Согласно СП 17.13330.2017 Кровли, в один слой можно применять битумно-полимерный кровельный материал, закрепляемый механическим способом, толщиной не менее 5 мм с относительным удлинением не менее 30%, прочностью вдоль/поперек полотна не менее 900/700 (Н/5 см) по ГОСТ 31899-1 и сопротивлением раздиру стержнем гвоздя не менее 240 Н по ГОСТ 31898-1.
Специалисты компании ТЕХНОНИКОЛЬ создали материал, который полностью соответствует данным требованиям, — ТЕХНОЭЛАСТ СОЛО РП1.
Готовность к нагрузкам
Кровельные рулонные битумосодержащие материалы должны соответствовать ГОСТ 32805-2014. По этому стандарту, для однослойных кровельных материалов дополнительно нужно определять сопротивление статическому (ГОСТ 31897) и динамическому (ГОСТ EN 12730) продавливанию. Это очень важно, потому что при эксплуатации в кровельных системах материалы могут подвергаться механическому воздействию двух типов — долговременным статическим нагрузкам или кратковременным динамическим нагрузкам. Данные значения могут стать ключевыми при сравнении с другими типами гидроизоляционных материалов.
Таблица с характеристиками ТЕХНОЭЛАСТ СОЛО РП1
На долгие годы
Подбирая материал для устройства кровли, любой застройщик хочет не просто защитить здание от атмосферных осадков, а сделать так, чтобы она прослужила много лет без ремонта. Чтобы оценить возможности однослойной мембраны, компания ТЕХНОНИКОЛЬ провела испытания в ЦНИИПромзданий по методике определения потенциального срока службы битуминозных рулонных и мастичных кровельных материалов. Для этого в лабораторных условиях создаются циклические воздействия атмосферных факторов (ультрафиолетовых лучей, тепла, воды и мороза) и определяются изменения показателей материала. Согласно заключению ЦНИИПромзданий, потенциально возможный срок службы ТЕХНОЭЛАСТ СОЛО РП1 на крыше может достигать 35–40 лет.
«Не унесенные ветром»
Чтобы кровля «не улетела», важно правильно рассчитать необходимое количество крепежа. Выяснить, какую нагрузку способен выдержать материал вместе с крепежом, специалистам ТЕХНОНИКОЛЬ помогли испытания в Швеции по методикам EN-16002:2010 и ETAG 006:2000. Полученные данные были включены в расчет, который размещен на сайте https://nav.tn.ru/calculators/roof-load/. Также расчет можно заказать через Проектно-расчетный центр ТЕХНОНИКОЛЬ (https://nav.tn.ru/services/proektno-raschetnyy-tsentr/).
Эффективное комбо
При укладке кровли по теплоизоляционным плитам выбор материалов для утеплителя зависит от того, каким образом будет эксплуатироваться крыша, от требований СП 17.13330.2017 Кровли и пожарной безопасности конструкции.
Для обеспечения класса пожарной опасности конструкции К0 в кровельных решениях по профилированному настилу предусмотрено применение плит из негорючей каменной ваты.
Прочность и возможное сочетание теплоизоляционных плит, согласно СП 17.13330.2017 Кровли, зависит от интенсивности пешеходной нагрузки (динамичная точечная многократно повторяющаяся нагрузка, действующая на неэксплуатируемую кровлю, например, при сезонных осмотрах кровли, текущем обслуживании оборудования на крыше, снегоудалении, ремонте крыши и т. п.).
Если рассматривать варианты с высокой нагрузкой, связанной с эксплуатацией крыши, и применением плит из каменной ваты с прочностью на сжатие не менее 40 кПа (ТЕХНОРУФ Н ПРОФ или ТЕХНОРУФ Н ОПТИМА), то выигрывают комбинированные решения: на слой минераловатного утеплителя укладываются плиты из экструзионного пенополистирола (XPS ТЕХНОНИКОЛЬ CARBON PROF) или пенополиизоцианурата (LOGICPIR PROF). Данное сочетание возможно применять на крышах торговых центров, производственных и складских комплексов, спортивных центров и других общественных зданий.
Пару — отпор
Кровельная конструкция должна быть защищена от влагонакопления. Это может случиться из-за неправильного выбора материала для пароизоляционного слоя или ошибок при монтаже. Теплоизоляционные плиты постепенно начнут промерзать и потеряют свои свойства, что приведет к разрушению всей кровельной системы и необходимости масштабного ремонта.
Полимерные пароизоляционные пленки не всегда способны обеспечить герметичность пароизоляционного слоя. Тем более если речь идет о кровельных системах с механической фиксацией: через образованные отверстия в местах крепежа в конструкцию крыши интенсивно проходит водяной пар. Вот почему для данных конструкций больше подходят пароизоляционные битумно-полимерные материалы. Они обволакивают крепеж битумно-полимерным вяжущим. Именно такие решения признаны наиболее надежными для крыш с мехфиксацией кровельных слоев к профлисту — это отражено в СП 17.13330.2017 Кровли.
В линейке ТЕХНОНИКОЛЬ представлен специальный продукт для пароизоляции — ПАРОБАРЬЕР С, который успешно применяется в указанных кровельных системах. Этот фольгированный битумосодержащий материал, армированный стеклосеткой, обладает множеством преимуществ. Он очень удобен в монтаже, легко и надежно приклеивается к поверхности — по такому покрытию можно передвигаться прямо во время работ. Мембрана создает надежный «барьер» водяному пару из внутренних помещений, поэтому ПАРОБАРЬЕР С эффективно «работает» в зданиях с любым влажностным режимом.
Системное решение
Однослойное решение кровли из материала ТЕХНОЭЛАСТ СОЛО РП1, комбинированная теплоизоляция и ПАРОБАРЬЕР как раз представлены в решениях ТН-КРОВЛЯ Мастер Соло и ТН-КРОВЛЯ Соло Смарт.
Материал ТЕХНОЭЛАСТ СОЛО РП1 обладает повышенными противопожарными характеристиками — РП1, В2, что позволяет получить группу пожарной опасности кровли КП0 согласно таблице 5.2 СП 17.13330.2017 и применять систему ТН-КРОВЛЯ Мастер Соло на крышах зданий большой площади без устройства противопожарных рассечек. Для системы ТН-КРОВЛЯ Смарт Соло максимально допустимая площадь кровли без устройства противопожарных рассечек составляет 5200 м2.
Цена вопроса
ТЕХНОЭЛАСТ СОЛО РП1 является оптимальным решением с экономической точки зрения по сравнению с другими типами однослойных гидроизоляционных материалов. В то же время надежность и долговечность покрытия не снижаются. Поэтому при прочих равных условиях (стоимость теплоизоляционного и пароизоляционного слоев) данный продукт наиболее интересен по соотношению «цена — качество».
Вывод
Кровельные системы ТН-КРОВЛЯ Мастер Соло и ТН-КРОВЛЯ Смарт Соло с комбинированной теплоизоляцией по праву считаются одним из самых эффективных решений на сегодняшний день — обеспечивается и долговечность, и способность выдерживать максимальные для неэксплуатируемых крыш нагрузки, и пожарная безопасность. А применение в составе систем материала ТЕХНОЭЛАСТ СОЛО РП1 делает такие решения экономически выгодными для инвестора.