Геофизические исследования
Чтобы получить полную надежную информацию о территории, где планируется располагать сооружение или бурить скважину, требуется провести геофизические изыскания. Такие работы предполагают исследование рельефа местности и присутствующего здесь грунта. В результате появляется информация о разрезе слоев земли и даются оценки возможности ведения запланированных работ. Также появляется возможность определять наличие на глубине полезных ископаемых. Геофизические исследования относятся к разновидности инженерных изысканий, о которые более подробно можно прочитать здесь.
Назначение исследований
В процессе геофизических исследований получаются точные сведения о характере недр территории, где планируется ведение строительных работ. Одновременно уточняется присутствие воды в этом месте, поскольку она может стать источником опасности. Кроме того, геофизические изыскания проводятся с целью решения следующих задач:
- наличие пустот, которые могут присутствовать в расположенных здесь породах;
- возможное возникновение оползней из-за повышенной влажности грунта;
- присутствие на территории проложенных коммуникаций;
- выявление связей между слоями земли;
- присутствие в недрах возможных углеводородных соединений или других полезных ископаемых.
Все эти изыскания совершаются с применением различных методов, а для работы используется сложное оборудование. Некоторые приборы основываются на создании электрических и магнитных полей, которые проникают внутрь грунта для получения необходимых сведений о его характере. Часто такая информация позволяет понять возможность проведения земляных работ. Если территория не отвечает нужным требованиям, планы меняются, что ведет к экономии средств, которые могли быть потрачены впустую. После окончания проведения геодезических исследований формируется база данных, позволяющая начать строительство с гарантированным качественным результатом.
Порядок проведения работ
Геофизические испытания проводятся на основании четко разработанного плана, который включает в себя следующие этапы:
- Подготовительный.
- Полевой.
- Камеральный.
Как только все этапы будут пройдены, с учетом полученных результатов составляется отчет. В нем проводится анализ деятельности, совершенной на данной территории. Это отражается в документе, содержащем сведения о результатах анализов снятых проб, проведенных в лабораторных условиях.
Геофизические изыскания совершаются в соответствии с существующим законодательством, поэтому у компаний, занимающихся такой деятельностью, обязательно должна быть лицензия. Именно она дает ей право проводить такого рода работы. Все окончательные результаты затем передаются заказчику.
Большое количество информации о потребности проведения изысканий и ее этапах содержится в этой статье. Здесь хорошо рассказывается о возможных рисках, присутствующих во время возведения сооружений или бурении скважин при отсутствии нужных сведений.
Подготовительный этап
Данный этап еще называется проектным. Начинается он с обращения клиента к геофизикам. После получения технического задания специалисты начинают работу с архивными документами. С этой целью ищется и рассматривается вся существующая документация, относящаяся к территории, на которой планируется разработка объекта. Делается для того, чтобы провести детальный анализ имеющихся сведений.
На данном этапе с помощью архивных данных уточняется характер присутствующих на территории грунтов, чтобы спланировать методы будущей работы. Они могут быть песчаные или суглинистые, и эти сведения очень важны для раскопок.
Кроме работы с архивными документами, геофизиками посещаются надзорные органы, чтобы получить у них разрешение для проведения съемки местности.
На проектной стадии прогнозируется вероятность рисков проведения геофизических исследований. Все существующие районы разделяются на 3 группы:
- опасные;
- с возможно существующей опасностью;
- безопасные.
Чтобы дать по возможности точный ответ степени риска, используются карты, в которых указывается распространение опасных геологических процессов. Имея эти сведения, разрабатываются методы будущих геофизических исследований.
В заключении ведется составление сметы будущих геофизических работ. Для этого существуют специальные нормативные документы, где расписывается весь объем исследований, проводимый во время инженерных изысканий. На основании согласованной сметы составляется календарный план. Обычно все работы длятся на протяжении 2 месяцев. На этом подготовительный этап геофизических исследований подходит к концу.
Полевые работы
Как только все работы на предварительном этапе завершаются, начинается вторая стадия геофизических исследований. Ведется согласование количества задействованных сотрудников и необходимого транспорта для выполнения полевых исследований. Затем собранный отряд выезжает на объект со всем оборудованием. Работы здесь проводятся по заранее отработанным методикам, которые бывают следующих основных видов:
- сейсморазведка;
- гравиразведка;
- магниторазведка;
- электроразведка;
- ядерная геофизика;
- терморазведка.
Иногда используются и другие способы геофизических исследований, но они не являются распространенными, поэтому применяются значительно реже. В процессе выполнения работы на месте изучается территория. Выражается это в составлении топографической съемки местности с целью изучение ее рельефа и уточнения наличия подземных вод. На основании полученных данных составляется схема расположения возвышенностей и низин местности. Вся эта информация является предварительной, поэтому тщательно собирается для дальнейших лабораторных исследований, чтобы после их окончания сделать окончательные выводы.
Работа заканчивается составлением технического отчета с подробным анализом результатов изысканий, проведенных на исследуемой территории. Информация выкладывается в текстовом и графическом форматах. В отчете обязательно присутствует информация о наличии лицензии у организации, занимающейся геофизическими исследованиями.
Камеральная работа
Вся полученная в ходе полевых работ информация систематизируется и только потом заносится в документацию. Происходит это в три этапа:
- Сначала все собранные данные в ходе полевых работ обрабатываются. В случае необходимости создаются предварительные модели или карты для изучения проходящих внутри земли процессов. Для облегчения работы используются специальные технологии и инструменты. Они включают в себя лазерное сканирование или изучение спутниковых снимков.
- Происходит анализ данных с использованием геохимических, гидрогеологических или геофизических методов. На основании полученных результатов определяется свойство исследуемых пород, их структура и возраст. Также на этой стадии уточняются возможные риски, выражающиеся в опасности возникновения землетрясений или смещения горных пород.
- Заключительный этап камеральных работ включают в себя создание окончательных карт и моделей объектов. Делается это с целью получения точных представлений о проходящих на данной территории земли процессах.
Камеральная работа также включает в себя изучение всех проложенных в земле коммуникаций. Если их расположение неудачное, то в топографический план вносятся поправки. Однако такая работа требует согласования.
Сейсморазведка
Метод сейсморазведки основывается на исследовании объекта с использованием свойств упругих колебаний. Связано это с тем, что в различных средах они распространяются с определенной скоростью. Это зависит от плотности горных пород, их пористости и глубины залегания. В процессе пробега волн с помощью приборов они улавливаются, и все данные регистрируются сейсмографами. В результате появляется возможность установить границы залегания определенных пород и их характер.
Используя сейсморазведку, решаются геофизические задачи с высокой степенью точности. Такой метод считается трудоемким и очень дорогостоящим, поскольку для работы задействуются сложные приборы. Однако данный способ полностью себя оправдывает, поскольку дает хорошие результаты для разведки месторождений расположения нефти и газа.
Геологическая среда характеризуется неравномерностью своего расположения, поэтому во время прохождения волн наблюдается их отражение, преломление и поглощение. Благодаря такому эффекту, а также изменению скорости прохождения волн, появляется возможность проводить исследования территории и получать все необходимые результаты.
Гравиразведка
Под гравитационным способом, который еще называют гравиметрическим методом, понимается исследование литосферы, ее строение и поиск в ней полезных ископаемых. Данная разведка основывается на характере работы гравитационного поля земли. В данном случае за базовый параметр берется такая величина как ускорение свободного падения тела. Данный параметр известен давно, но только в последние 50-70 лет получилось достичь высокой точности измерения этого значения. Фиксируется величина с помощью специальных приборов, предназначенных специально для этих целей. Данный метод основывается на изменении параметра ускорения свободного падения тел с учетом особенностей Земли. Это обуславливается различной формой ее поверхности и внутренним строением. Также на величину свободного падения влияет различная плотность слоев Земли и расположение горных пород.
Гравитационная разведка отличается большой производительностью, ее применение выражается высокими качественными результатами. Используя такой способ, появляется возможность вести исследования на различную глубину, которая может составлять десятки метров и такое же количество километров. Это особенно удобно, когда требуется изучить слои Земли, расположенные очень далеко от поверхности.
Магниторазведка
Магнитная разведка носит еще название магнитометрического метода. Его использование ведется на основе существующего магнитного поля Земли. Такое явление было известно давно, но только в последнее время магниторазведка стала использоваться для решения задач геофизических исследований.
Суть метода состоит в том, что Земля является космическим телом, внутри которого формируется нормальное магнитное поле. На практике оно еще носит название первичное. В недрах земли присутствуют горные породы, и многие руды обладают магнитными свойствами. В результате их взаимодействия с магнитным полем Земли происходит процесс намагничивания. Это приводит к созданию аномального магнитного поля, которое еще носит название вторичного. Задачи магниторазведки состоят в выделении вторичных магнитных полей из суммарных составляющих с целью их исследования.
Такой геофизический метод характеризуется высокой производительностью. С его помощью осуществляется разведка с целью нахождения железных руд. Кроме того, он находит широкое применение во многих других областях, поскольку дает наглядное представления о недрах земли. При любых строительных работах каждая организация хорошо понимает структуру слоев, где будет располагаться возводимый объект.
Электроразведка
Метод электроразведки также используется для геофизических исследований недр Земли. Однако в данном случае изучение происходит уже электромагнитных полей, которые формируются за счет проходящих естественных физико-химических и атмосферных процессов. Также они еще создаются искусственно, и на этом основывается суть метода электроразведки. Электромагнитные поля бывает двух видов:
- Установившиеся. Длительность импульса составляет больше 1 секунды.
- Неустановившиеся. Здесь этот параметр уже выражается в микросекундах.
В зависимости от существующих природных факторов данной местности и свойств отдельных горных пород, изменяется интенсивность естественных электромагнитных полей и их структура. Что касается естественных полей, то здесь кроме перечисленных факторов еще добавляется источник возбуждения.
Суть электроразведки заключается в изменении его интенсивности. В случае увеличения его мощности повышается глубинность разведки и расширяется территория по объему. В целом метод похож на магниторазведку, поскольку также фиксирует изменение направления и скорость движения сигнала, который отображается на установленных приборах. Способ отличается высокой эффективностью и дает возможности геофизикам получать нужную информацию о структуре слоев Земли.
Ядерная геофизика
Метод ядерной физики базируется на естественной радиоактивности горных пород. Такой способ позволяет вести изучение недр Земли только на небольшой глубине, поскольку ядерное излучение быстро поглощается окружающей средой. К ней относится воздух или любые рядом расположенные породы.
Работа по глубинному исследованию территории осуществляется с помощью гамма и эманационной съемки. В первом случае ведется изучение силы гамма-излучения. Во время эманационной съемки по исследованию альфа-излучения определяется уровень концентрации в почве радиоактивного газа.
При создании искусственной радиоактивности горные породы облучаются гамма-квантами или нейтронами, что позволяет быстро определить состав слоев земли и другие их свойства. Достигается это изменением уровня наведенного поля и методичным изменением его характеристик.
Используя метод ядерной физики, появляется возможность выявить на небольшой глубине существующие полезные ископаемые, а также определить их возраст. Также определяется, есть ли возможность на данной территории вести строительство объекта.
Терморазведка
Геотермическая разведка базируется в геофизических исследованиях на изучении существующего теплового поля Земли. Такое явления основывается на источниках тепла, которые могут быть как внешними, так и внутренними. Кроме того, тепловыми свойствами характеризуются еще горные породы. В процессе ведения исследований приборами регистрируются исходящие от земной поверхности инфракрасное и радиотепловое излучения. Кроме того, измеряется температура теплового потока. Изучение всех этих параметров дает информацию о характере слоев Земли территории данного района. В процессе ведения работы методом терморазведки осуществляются инфракрасные и радиотепловые съемки. Это позволяет выявлять не только существующие месторождения полезными ископаемыми, а также уточнять уровень расположения мерзлоты и глубину движения подземных вод. Данная информация отличается повышенной достоверностью и является очень важной в процессе ведения геофизических исследований.
Контроль геофизических изысканий
Чтобы полученные результаты отвечали всем необходимым требованиям и были достоверными, на конечной стадии проводится их контроль. Он совершается на основании поданного исполнителем отчета. Здесь изучается описание пород и результаты обследований, просматриваются ведомости сдачи собранных образцов. Также осуществляется выборочная проверка лабораторных анализов. Все выводы оформляются в письменном виде. Это выражается в составлении акта технического контроля.
Геофизические изыскания относятся к необходимым исследованиям грунта территории перед началом строительных работ или бурением скважин. Это позволяет всестороннее изучить местность с целью исключения рисков, связанных с подвижностью слоев земли или их оседанием.
Наблюдая и контролируя
Геотехнический мониторинг имеет свою региональную специфику и все активнее проводится с использованием новых методов, технологий и оборудования. Они помогают повысить эффективность наблюдений и исследований.
Геотехнический мониторинг — комплекс работ, связанный с контролем и наблюдением за строящимися и существующими зданиями и сооружениями на предмет их безопасной эксплуатации. Он имеет свои особенности не только в зависимости от наблюдаемого объекта, но и его локации и географии региона. Современные методы и технологии позволяют проводить геотехнический мониторинг более точно и эффективно.
Все работы по устройству фундаментов и подземному строительству, возведению зданий в условиях городской застройки, поясняет д. т. н., профессор кафедры геотехники СПбГАСУ Рашид Мангушев, предполагают проведение геотехнического мониторинга с определением деформаций зданий и сооружений, попадающих в зону влияния, и регулируются нормативными документами в виде СП 22.13330, СП 305.1325800 и др. Это связано с тем, что при любых геотехнических работах возникают деформации, вызванные технологическими строительными воздействиями, например, при экскавации котлована под подземное сооружение, или от вибрационного воздействия строительной техники при устройстве их ограждений и обеспечении их устойчивости (такие деформации тоже относятся к технологическим). «Требования по проведению геотехнического мониторинга на территории Российской Федерации определяются строительным сводом правил, по своей сути являются едиными, но существуют региональные особенности, которые диктуются грунтовыми условиями и наличием геологических процессов», — добавляет эксперт.
По словам главного инженера ООО «Технотест» Александра Харитонова, в общем случае геотехнический мониторинг должен включать в себя систему наблюдений за объектом нового строительства, за окружающей застройкой и надземными конструкциями существующих инженерных коммуникаций, попадающих в зону влияния строительства, ограждающими конструкциями строительного котлована, а также за массивом грунта, прилегающим к подземной части объекта.
«Так как наша компания занимается усилением фундаментов, — рассказывает генеральный директор ООО "Оптимум Прайс" Данил Кругов, — то геомониторинг мы используем практически постоянно. Чаще самостоятельно в рамках проведения локальных работ. Применяем лазерные нивелиры и систему связи по рации, когда один или два сотрудника контролируют реперные точки снаружи здания, а прочие заняты внутри процессом нагнетания составов под основания здания. Добавлю, что нам в этом плане легче, чем коллегам, закачивающим полиуретаны. Составы для усиления грунтов марки "ФОРС", которые мы используем, не обладают способностью бесконтрольного расширения, и сотрудник, занятый процессом геомониторинга, может очень быстро остановить процесс подъема основания, скомандовав отпустить гашетку насоса.
Такую простую, но эффективную систему геомониторинга мы применяли при работах как по усилению бомбоубежища Петропавловской крепости, так и при усилении частного жилого дома в Волгограде».
Своя специфика
Со значимостью особенностей географической и региональной специфики согласны и отраслевые специалисты. Как отмечает руководитель геодезической службы ООО «ГЕОИЗОЛ» Денис Новиков, «Санкт-Петербург и Москва — это, в первую очередь, освоение подземного пространства и котлованы. Здесь необходимы инструментальные наблюдения за соседними домами, в которых живут люди. В гористой и холмистой местности, например, в Сочи, где сильно влияние склоновых процессов, необходимы маршрутные наблюдения и оконтуривание оползней. В условиях Крайнего Севера и вечной мерзлоты — это наблюдения за температурными характеристиками грунта. Геотехнический мониторинг выполняется на основании сводов правил и ГОСТов. Но ГОСТы разрабатываются в основном специалистами из Москвы. При этом грунтовые условия в Санкт-Петербурге очень сильно отличаются от условий столицы, яркий тому пример — заглубление станций метрополитена. Специалистами определено, что историческая часть нашего города имеет осадку даже без какого-либо воздействия. А свод правил или нормативная литература дают возможность оказывать влияние на окружающую застройку не более 5 мм за весь период строительства. То есть строить или реконструировать в условиях Санкт-Петербурга, вблизи памятников архитектуры практически нереально. Таким образом, необходимо корректировать нормы с учетом условий каждого региона нашей огромной страны», — считает он.
«Основной особенностью геотехнического мониторинга в Москве, — продолжает тему Александр Харитонов, — является наличие высотных строительных объектов с необходимостью устройства глубоких котлованов в условиях плотной городской застройки. Данный фактор, в свою очередь, добавляет в список работ, необходимых для проведения в рамках геотехмониторинга, такие как: измерения усилий в ограждающих конструкциях котлованов и системе их крепления (тензометры, динамометры), измерение усилий в сваях и давления под подошвой фундаментной плиты подземного сооружения (мессдозы, тензометры) и др. Добавлю, что наша компания в основном занимается геотехническим мониторингом зданий и сооружений категории КС-3, что само по себе предполагает интересную и сложную работу. В частности, на данный момент мы ведем геотехнический мониторинг таких высотных комплексов, как ЖК "Сити Бэй", ЖК "Вестердам" и ЖК iLove в Москве», — рассказывает главный инженер компании «Технотест».
Больше автоматизма
В настоящее время, отмечает Рашид Мангушев, рынок оборудования и программного обеспечения в геомониторинге главным образом сосредоточен вокруг двух важных методов: лазерное сканирование и ортофотосъемка. Во-первых, они позволяют получить пространственную картину накопившихся деформаций здания или сооружения, во-вторых, полученные материалы мы интегрируем в проектные решения с усилением фундаментов зданий или конструкций, а в-третьих, такой подход дает все основания выявлять характер неравномерных деформаций и управлять строительными процессом, снижая степень такого влияния. Интересным и перспективным также является осуществление так называемого on-line-мониторинга, при котором замеры выполняются автоматизированно, с определенным интервалом, а данные в последующем анализируются и служат для определения уровня безопасности проводимых работ.
«Наша мониторинговая группа под руководством к. т. н., доцента Ивана Дьяконова использует в своем арсенале не только ультрасовременный подход к выполнению геотехнического мониторинга, но и все традиционные способы контроля деформаций. Поскольку на кафедру геотехники в основном обращаются со сложными случаями геотехнического строительства, все объекты, за которыми мы ведем мониторинг, представляют собой значимые и уникальные сооружения. Так, в настоящее время, —добавляет Рашид Мангушев, — одним из наиболее значимых для нас является строительство здания Санкт-Петербургского спортивно-концертного комплекса — СКК, где мы выполняем работы по комплексному геотехническому мониторингу».
По мнению Дениса Новикова, самый инновационный и современный метод — это автоматизированный мониторинг. Уже достаточно давно существуют высокоточные автоматические тахеометры и сканеры для определения осадок, смещений и кренов зданий, автоматические инклинометрические системы как зарубежного, так и российского производства для определения смещения грунтового массива и/или ограждения котлована, автоматические датчики вибрации, уровня грунтовых вод и порового давления. Весь геотехнический мониторинг можно свести в единую наблюдательную станцию, и один оператор за монитором сможет выдавать рекомендации и отчеты в любое время. «В целом, самым интересным с инженерной точки зрения объектом для меня является "Орловский тоннель" в Санкт-Петербурге. Несмотря на то, что тоннель так и не был построен, но даже в рамках проектной документации это был очень сложный объект. Программа мониторинга учитывала автоматические метеостанции, которые вносили поправки в сеть автоматизированных тахеометров для выполнения высокоточных съемок деформаций зданий и массива грунта», — резюмирует представитель компании «ГЕОИЗОЛ».
Мнение:
Данил Кругов, генеральный директор ООО «Оптимум Прайс»:
— В состав проведения обследования и проектирования, когда требуется серьезный отчет, масштабные исследования по геомониторингу, с использованием спутниковых систем, мы привлекаем специализированные организации на субподряд. Например, так было на объекте в Калининграде, где три строения, соседствующие с резиденцией президента, сползали с холма. Казус с самостоятельным геомониторингом случился с нами лишь однажды. Дело было на Трехгорной мануфактуре в Москве. Там мы контролировали подъем до проектной отметки старинной стены в метр кладки толщиной. Десятиметровая конструкция вековой давности встала на свое место, что приятно поразило и обрадовало заказчика. Как же мы удивились через месяц, когда тот же заказчик отказался оплачивать финальную часть по контракту. Оказалось, что пол, который мы вместе с технадзором считали значащимся под демонтаж, за которым мониторинг не проводился, бесконтрольно поднялся в одном месте, и за него нам выкатили счет. Бывает и так.
СФТК-системы «Сен-Гобен»: эффективное теплосбережение и эстетика зданий
Компания «Сен-Гобен» производит и продает высококачественные материалы и инновационные решения для строительной отрасли, основные из которых: изоляция ISOVER, ISOROC, гипсовые плиты GYPROC, сухие строительные смеси WEBER-VETONIT. В 2020 году портфель компании был дополнен научной базой ООО НПФ «Адгезив» в области полиуретановых материалов и строительной химии.
Уже более 30 лет «Сен-Гобен» ведет активную деятельность на территории России: на данный момент функционирует порядка одиннадцати заводов в России и странах СНГ, что позволяет самостоятельно производить большую линейку строительных материалов без прерывания поставок в условиях санкций и новых экономических вызовов. На территории России также есть собственный R&D-центр разработок, что позволяет продолжать развитие продуктового портфеля и сохранять высокое качество продукции.
Компания является одним из лидеров в России по производству и продаже всего комплекса СФТК-систем, которые выпускаются смесевым брендом WEBER-VETONIT в коллаборации c мировым лидером тепло- и звукоизоляции ISOVER.
В портфеле компании есть четыре основных СФТК-решения:
- THERM — система с утеплителем из пенополистирола;
- THERM MIN — с исполнением на теплоизоляционных плитах ISOVER на основе базальта и кварца;
- THERM CLINKER — с облицовкой клинкерной плиткой в качестве финишного слоя;
- THERM MONOROC — сверхпрочная система с толстым наружным штукатурным слоем и подвесной системой крепежа.
Что же еще отличает СФТК-системы WEBER-VETONIT, помимо высокой экспертизы и наличия полного комплекса материалов:
- надежность и долговечность: системы сертифицированы по ГОСТ Р 56707-2015 с присвоением повышенного класса надежности СК0;
- безопасность: пожарные сертификаты выданы МЧС России, климатические испытания проведены на базе МГСУ (г. Москва). Системы допущены к использованию на фасадах школ, садиков, общественных зданий и др.;
- эстетичность: широкая линейка декоративных покрытий;
- удобство монтажа: благодаря запасам прочности материалов, а также уникальному продукту для российского рынка теплоизоляции — кварцевым плитам ISOVER, которые на 40% легче аналогов из базальта при сохранении тех же прочностных характеристик 45/15 кпа, что облегчает монтаж, а также поднимает качество выполнения работ;
- современное проектирование: с 2004 года компания «Сен-Гобен» лидирует в разработках в области цифрового моделирования и BIM (Building Information Modeling);
- профессиональная техническая поддержка на всех этапах: подбор материалов, возможность проведения шефмонтажа, а также консультирование после сдачи объекта.
«Сен-Гобен» продолжает свое развитие в области СФТК, активно выпуская новые продукты в области теплоизоляции, декоративных покрытий и других решений. Новинка 2022 года — это VETONIT HYBRID UNIVERSAL — однокомпонентный гибридный клей-герметик на основе STP-полимера, который обладает высокой адгезией практически ко всем основаниям, включая влажные, устойчивостью к УФ, а также сохраняет эластичность в интервале температур от -60 до +90 °С.
Компания всегда стремится выстраивать долгосрочные отношения со своими партнерами и поддерживать лояльность, поэтому предлагает получать выгоду в Профи Клубе при покупках материалов «Сен-Гобен».
Участники Клуба лояльности всегда могут узнать в удобном приложении актуальную информацию об акциях, а также зарегистрироваться и принять участие в мастер-классах «День Сен-Гобен» от ведущих технических специалистов, включая обучение по монтажу СФТК-систем.
Больше подробной информации вы можете найти на информационном портале компании — HUB «Сен-Гобен».