Геофизические исследования


09.02.2024 09:00

Чтобы получить полную надежную информацию о территории, где планируется располагать сооружение или бурить скважину, требуется провести геофизические изыскания. Такие работы предполагают исследование рельефа местности и присутствующего здесь грунта. В результате появляется информация о разрезе слоев земли и даются оценки возможности ведения запланированных работ. Также появляется возможность определять наличие на глубине полезных ископаемых. Геофизические исследования относятся к разновидности инженерных изысканий, о которые более подробно можно прочитать здесь.


Назначение исследований

В процессе геофизических исследований получаются точные сведения о характере недр территории, где планируется ведение строительных работ. Одновременно уточняется присутствие воды в этом месте, поскольку она может стать источником опасности. Кроме того, геофизические изыскания проводятся с целью решения следующих задач:

  • наличие пустот, которые могут присутствовать в расположенных здесь породах;
  • возможное возникновение оползней из-за повышенной влажности грунта;
  • присутствие на территории проложенных коммуникаций;
  • выявление связей между слоями земли;
  • присутствие в недрах возможных углеводородных соединений или других полезных ископаемых.

Все эти изыскания совершаются с применением различных методов, а для работы используется сложное оборудование. Некоторые приборы основываются на создании электрических и магнитных полей, которые проникают внутрь грунта для получения необходимых сведений о его характере. Часто такая информация позволяет понять возможность проведения земляных работ. Если территория не отвечает нужным требованиям, планы меняются, что ведет к экономии средств, которые могли быть потрачены впустую. После окончания проведения геодезических исследований формируется база данных, позволяющая начать строительство с гарантированным качественным результатом.

Порядок проведения работ

Геофизические испытания проводятся на основании четко разработанного плана, который включает в себя следующие этапы:

  1. Подготовительный.
  2. Полевой.
  3. Камеральный.

Как только все этапы будут пройдены, с учетом полученных результатов составляется отчет. В нем проводится анализ деятельности, совершенной на данной территории. Это отражается в документе, содержащем сведения о результатах анализов снятых проб, проведенных в лабораторных условиях.

Геофизические изыскания совершаются в соответствии с существующим законодательством, поэтому у компаний, занимающихся такой деятельностью, обязательно должна быть лицензия. Именно она дает ей право проводить такого рода работы. Все окончательные результаты затем передаются заказчику.

Большое количество информации о потребности проведения изысканий и ее этапах содержится в этой статье. Здесь хорошо рассказывается о возможных рисках, присутствующих во время возведения сооружений или бурении скважин при отсутствии нужных сведений.

Подготовительный этап

Данный этап еще называется проектным. Начинается он с обращения клиента к геофизикам. После получения технического задания специалисты начинают работу с архивными документами. С этой целью ищется и рассматривается вся существующая документация, относящаяся к территории, на которой планируется разработка объекта. Делается для того, чтобы провести детальный анализ имеющихся сведений.

На данном этапе с помощью архивных данных уточняется характер присутствующих на территории грунтов, чтобы спланировать методы будущей работы. Они могут быть песчаные или суглинистые, и эти сведения очень важны для раскопок.

Кроме работы с архивными документами, геофизиками посещаются надзорные органы, чтобы получить у них разрешение для проведения съемки местности.

На проектной стадии прогнозируется вероятность рисков проведения геофизических исследований. Все существующие районы разделяются на 3 группы:

  • опасные;
  • с возможно существующей опасностью;
  • безопасные.

Чтобы дать по возможности точный ответ степени риска, используются карты, в которых указывается распространение опасных геологических процессов. Имея эти сведения, разрабатываются методы будущих геофизических исследований.

В заключении ведется составление сметы будущих геофизических работ. Для этого существуют специальные нормативные документы, где расписывается весь объем исследований, проводимый во время инженерных изысканий. На основании согласованной сметы составляется календарный план. Обычно все работы длятся на протяжении 2 месяцев. На этом подготовительный этап геофизических исследований подходит к концу.

Полевые работы

Как только все работы на предварительном этапе завершаются, начинается вторая стадия геофизических исследований. Ведется согласование количества задействованных сотрудников и необходимого транспорта для выполнения полевых исследований. Затем собранный отряд выезжает на объект со всем оборудованием. Работы здесь проводятся по заранее отработанным методикам, которые бывают следующих основных видов:

  • сейсморазведка;
  • гравиразведка;
  • магниторазведка;
  • электроразведка;
  • ядерная геофизика;
  • терморазведка.

Иногда используются и другие способы геофизических исследований, но они не являются распространенными, поэтому применяются значительно реже. В процессе выполнения работы на месте изучается территория. Выражается это в составлении топографической съемки местности с целью изучение ее рельефа и уточнения наличия подземных вод. На основании полученных данных составляется схема расположения возвышенностей и низин местности. Вся эта информация является предварительной, поэтому тщательно собирается для дальнейших лабораторных исследований, чтобы после их окончания сделать окончательные выводы.

Работа заканчивается составлением технического отчета с подробным анализом результатов изысканий, проведенных на исследуемой территории. Информация выкладывается в текстовом и графическом форматах. В отчете обязательно присутствует информация о наличии лицензии у организации, занимающейся геофизическими исследованиями.

Камеральная работа

Вся полученная в ходе полевых работ информация систематизируется и только потом заносится в документацию. Происходит это в три этапа:

  1. Сначала все собранные данные в ходе полевых работ обрабатываются. В случае необходимости создаются предварительные модели или карты для изучения проходящих внутри земли процессов. Для облегчения работы используются специальные технологии и инструменты. Они включают в себя лазерное сканирование или изучение спутниковых снимков.
  2. Происходит анализ данных с использованием геохимических, гидрогеологических или геофизических методов. На основании полученных результатов определяется свойство исследуемых пород, их структура и возраст. Также на этой стадии уточняются возможные риски, выражающиеся в опасности возникновения землетрясений или смещения горных пород.
  3. Заключительный этап камеральных работ включают в себя создание окончательных карт и моделей объектов. Делается это с целью получения точных представлений о проходящих на данной территории земли процессах.

Камеральная работа также включает в себя изучение всех проложенных в земле коммуникаций. Если их расположение неудачное, то в топографический план вносятся поправки. Однако такая работа требует согласования.

Сейсморазведка

Метод сейсморазведки основывается на исследовании объекта с использованием свойств упругих колебаний. Связано это с тем, что в различных средах они распространяются с определенной скоростью. Это зависит от плотности горных пород, их пористости и глубины залегания. В процессе пробега волн с помощью приборов они улавливаются, и все данные регистрируются сейсмографами. В результате появляется возможность установить границы залегания определенных пород и их характер.

Используя сейсморазведку, решаются геофизические задачи с высокой степенью точности. Такой метод считается трудоемким и очень дорогостоящим, поскольку для работы задействуются сложные приборы. Однако данный способ полностью себя оправдывает, поскольку дает хорошие результаты для разведки месторождений расположения нефти и газа.

Геологическая среда характеризуется неравномерностью своего расположения, поэтому во время прохождения волн наблюдается их отражение, преломление и поглощение. Благодаря такому эффекту, а также изменению скорости прохождения волн, появляется возможность проводить исследования территории и получать все необходимые результаты.

Гравиразведка

Под гравитационным способом, который еще называют гравиметрическим методом, понимается исследование литосферы, ее строение и поиск в ней полезных ископаемых. Данная разведка основывается на характере работы гравитационного поля земли. В данном случае за базовый параметр берется такая величина как ускорение свободного падения тела. Данный параметр известен давно, но только в последние 50-70 лет получилось достичь высокой точности измерения этого значения. Фиксируется величина с помощью специальных приборов, предназначенных специально для этих целей. Данный метод основывается на изменении параметра ускорения свободного падения тел с учетом особенностей Земли. Это обуславливается различной формой ее поверхности и внутренним строением. Также на величину свободного падения влияет различная плотность слоев Земли и расположение горных пород.

Гравитационная разведка отличается большой производительностью, ее применение выражается высокими качественными результатами. Используя такой способ, появляется возможность вести исследования на различную глубину, которая может составлять десятки метров и такое же количество километров. Это особенно удобно, когда требуется изучить слои Земли, расположенные очень далеко от поверхности.

Магниторазведка

Магнитная разведка носит еще название магнитометрического метода. Его использование ведется на основе существующего магнитного поля Земли. Такое явление было известно давно, но только в последнее время магниторазведка стала использоваться для решения задач геофизических исследований.

Суть метода состоит в том, что Земля является космическим телом, внутри которого формируется нормальное магнитное поле. На практике оно еще носит название первичное. В недрах земли присутствуют горные породы, и многие руды обладают магнитными свойствами. В результате их взаимодействия с магнитным полем Земли происходит процесс намагничивания. Это приводит к созданию аномального магнитного поля, которое еще носит название вторичного. Задачи магниторазведки состоят в выделении вторичных магнитных полей из суммарных составляющих с целью их исследования.

Такой геофизический метод характеризуется высокой производительностью. С его помощью осуществляется разведка с целью нахождения железных руд. Кроме того, он находит широкое применение во многих других областях, поскольку дает наглядное представления о недрах земли. При любых строительных работах каждая организация хорошо понимает структуру слоев, где будет располагаться возводимый объект.

Электроразведка

Метод электроразведки также используется для геофизических исследований недр Земли. Однако в данном случае изучение происходит уже электромагнитных полей, которые формируются за счет проходящих естественных физико-химических и атмосферных процессов. Также они еще создаются искусственно, и на этом основывается суть метода электроразведки. Электромагнитные поля бывает двух видов:

  1. Установившиеся. Длительность импульса составляет больше 1 секунды.
  2. Неустановившиеся. Здесь этот параметр уже выражается в микросекундах.

В зависимости от существующих природных факторов данной местности и свойств отдельных горных пород, изменяется интенсивность естественных электромагнитных полей и их структура. Что касается естественных полей, то здесь кроме перечисленных факторов еще добавляется источник возбуждения.

Суть электроразведки заключается в изменении его интенсивности. В случае увеличения его мощности повышается глубинность разведки и расширяется территория по объему. В целом метод похож на магниторазведку, поскольку также фиксирует изменение направления и скорость движения сигнала, который отображается на установленных приборах. Способ отличается высокой эффективностью и дает возможности геофизикам получать нужную информацию о структуре слоев Земли.

Ядерная геофизика

Метод ядерной физики базируется на естественной радиоактивности горных пород. Такой способ позволяет вести изучение недр Земли только на небольшой глубине, поскольку ядерное излучение быстро поглощается окружающей средой. К ней относится воздух или любые рядом расположенные породы.

Работа по глубинному исследованию территории осуществляется с помощью гамма и эманационной съемки. В первом случае ведется изучение силы гамма-излучения. Во время эманационной съемки по исследованию альфа-излучения определяется уровень концентрации в почве радиоактивного газа.

При создании искусственной радиоактивности горные породы облучаются гамма-квантами или нейтронами, что позволяет быстро определить состав слоев земли и другие их свойства. Достигается это изменением уровня наведенного поля и методичным изменением его характеристик.

Используя метод ядерной физики, появляется возможность выявить на небольшой глубине существующие полезные ископаемые, а также определить их возраст. Также определяется, есть ли возможность на данной территории вести строительство объекта.

Терморазведка

Геотермическая разведка базируется в геофизических исследованиях на изучении существующего теплового поля Земли. Такое явления основывается на источниках тепла, которые могут быть как внешними, так и внутренними. Кроме того, тепловыми свойствами характеризуются еще горные породы. В процессе ведения исследований приборами регистрируются исходящие от земной поверхности инфракрасное и радиотепловое излучения. Кроме того, измеряется температура теплового потока. Изучение всех этих параметров дает информацию о характере слоев Земли территории данного района. В процессе ведения работы методом терморазведки осуществляются инфракрасные и радиотепловые съемки. Это позволяет выявлять не только существующие месторождения полезными ископаемыми, а также уточнять уровень расположения мерзлоты и глубину движения подземных вод. Данная информация отличается повышенной достоверностью и является очень важной в процессе ведения геофизических исследований.

Контроль геофизических изысканий

Чтобы полученные результаты отвечали всем необходимым требованиям и были достоверными, на конечной стадии проводится их контроль. Он совершается на основании поданного исполнителем отчета. Здесь изучается описание пород и результаты обследований, просматриваются ведомости сдачи собранных образцов. Также осуществляется выборочная проверка лабораторных анализов. Все выводы оформляются в письменном виде. Это выражается в составлении акта технического контроля.

Геофизические изыскания относятся к необходимым исследованиям грунта территории перед началом строительных работ или бурением скважин. Это позволяет всестороннее изучить местность с целью исключения рисков, связанных с подвижностью слоев земли или их оседанием.


ИСТОЧНИК ФОТО: ASNinfo


Сравнение механических соединений арматуры с конической резьбой


27.12.2023 19:11

В прошедшем 2023 году механические соединения арматуры вышли на новый уровень в России, после активного использования на десятках сооружений трассы М-12 «Москва-Казань», торжественно открытой в конце декабря. По мнению экспертов, работавших на данном проекте и опрошенных АСН, муфты для арматуры позволяют сокращать затраты на арматурные работы, а главное гарантируют надёжность конструкции даже в сейсмоопасных регионах. В России производятся муфты всех типов, включая обжимные, с цилиндрической и конической резьбой.


У всех видов соединений есть свои достоинства, как и в целом у технологии МСА. С каждой из них построено множество значимых объектов, о которых писал «Строительный еженедельник». При этом у компании, производящей даже широкой номенклатуры муфт могут быть свои предпочтения, основанные на их опыте. Так по мнению специалистов завода ПромСтройКонтракт по технико-экономическим обоснованиям муфты с конической резьбой могут быть оценена как более экономичные по цене за стык, вне зависимости от производителя, а в силу самой технологии. Опрошенные эксперты описывают это так:

  • Деформативность конических муфт показывает более низкие значения на разных диаметрах арматуры, что подтверждается протоколами испытаний НИИЖБ и НИИОСП им. Н.М. Герсеванова
  • Монтаж муфт с конической резьбой, по мнению инженеров ПСК, позволяет легче монтировать конструкцию, не нужно скручивать резьбу на всю длину муфт, арматурный стержень практически до конца устанавливается за счёт формы конуса, когда достаточно несколько оборотов ключа для затяжки
  • Большая номенклатура производимых муфт c конической резьбой для различных конструктивных решений. На рынке существует несколько видов позиционных муфт, которые не только позволяют соединять арматурные стержни без возможности вращения арматуры, но и компенсировать разбежку арматуры при тыковке каркасов
  • Т.н. «Равнопрочность» в конусе, которая по мнению производителей таких муфт, достигается за счёт угла резьбы в муфтах. В самом тонком сечении на арматуре нагрузки перераспределяются на муфту и наоборот, в результате чего не происходит разрушения.

Эти аргументы приводятся различными производителям рекомендовать подобную технологию, без привязки к конкретным брендам или патентам. Следует помнить, что у других технологий арматурного соединения есть свои достоинства и апологеты: от обжимных муфт до технологии сварки, популярной, например, во многих республиках Северного Кавказа.  Выбор в итоге всегда остается за проектировочной организацией, которая часто учитывает мнение подрядчика. Факторы, оцениваемые подрядчиком, бывают самые разные: от облученности персонала и ранее полученном опыте (включая скорость поставок) до анализа последних крупных проектов с той или иной технологией.

В 2023 году была открыта трасса М-12, включающая мосты через Оку и вокруг Казани, построенные как с коническими, так и с цилиндриечскими муфтами для арматуры. Среди выдающихся объектов, достроенных с муфтами в этом году: небоскреб «Moscow Towers» в и десятки высотных ЖК в Санкт-Петербурге и других крупных городах. Одновременно через реку от «Москва-Сити» началось строительство уникального жилого комплекса на территории Бадаевского завода, также с муфтами с конической резьбой под маркой «КонКон». В 2024 года завершится строительство новой Олимпийской спортивной арены на севере Москвы. При этом немало крупных объектов строятся с цилиндрическими и обжимными муфтами. Рост числа таких грандиозных объектов с различными технологиями для соединения арматуры покажет в будущем какая технология победит.


ИСТОЧНИК ФОТО: пресс-служба ПромСтройКонтракт


ТИМ на стройке


26.12.2023 09:00

Ровно десять лет назад отрасль познакомилась с технологиями информационного моделирования. За это время ТИМ прочно освоился в сфере проектирования, стал обязательным для госзаказов, а сегодня делает первые уверенные шаги на строительной площадке. Эксперты отмечают, что к управлению проектом с помощью 4D-ТИМ готовы и заказчики, и разработчики отечественного софта.


Новый этап развития ТИМ начался 1 сентября 2023 года, когда приказ Росстандарта ввел в действие национальный стандарт ГОСТ Р 57363-2023 «Управление проектом в строительстве. Деятельность управляющего проектом (технического заказчика)». Документ сменил прежний ГОСТ Р 57363-2016, уточнив процессы, связанные с цифровизацией управления строительством и применением технологий информационного моделирования (ТИМ).

«В документе закреплены очень интересные зрелости заказчика, в том числе на стадии строительства», — обращает внимание Марина Романович, кандидат технических наук, доцент Санкт-Петербургского политехнического университета Петра Великого, эксперт в области технологии 4D-моделирования. Так, в пункте 3.7 отмечается, что зрелость заказчика (застройщика, инвестора и технического заказчика) определяется готовностью организации к внедрению ТИМ на различных стадиях жизненного цикла инвестиционно-строительного объекта. Если говорить конкретно про этап строительства, то речь идет о визуализации до начала проведения работ; управлении рисками при реализации инвестиционно-строительного проекта; возможности контроля хода проектирования и строительства на основе информационной модели в режиме реального времени благодаря использованию облачных сервисов; оптимизации проектных и технических решений, а также контроле соответствия проектных решений и результатов строительства.

К внедрению ТИМ на стройплощадки активно приступают заказчики. Например, сегодня в Москве подведомственные организации столичного Департамента строительства реализуют уже 61 объект с применением ТИМ на этапе строительства. Речь идет о работах в части возведения жилья, дорожной инфраструктуры, объектов здравоохранения и образования. О необходимости использования технологий информационного моделирования на всех этапах жизненного цикла говорят и в Росавтодоре. «Действительно, цифровизация, и в частности информационное моделирование, — это наше будущее. Да, есть вопросы и проблемы, но есть и точки роста: это и вопросы обеспечения информационного моделирования на этапе строительства, и необходимость учета затрат как подрядных организаций, так и заказчика на этапе строительства, и, заглядывая в будущее, — это вопросы информационного моделирования на этапе эксплуатации автомобильных дорог», — отмечает Георгий Гончаров, заместитель начальника Управления научно-технических исследований, информационных технологий и хозяйственного обеспечения Росавтодора.

 

Экономия без ущерба качеству

Интерес со стороны заказчиков подтверждают и разработчики отечественного программного обеспечения. «Преимущества информационного моделирования в первую очередь заключаются в эффективном управлении данными, — считает Степан Воробьев, руководитель Департамента внедрения и технического сопровождения программного обеспечения АО «СиСофт Девелопмент» (CSoft Development). — Насколько удобнее труд любого специалиста и качество принимаемых управленческих решений, когда нужная для этого информация «под рукой» — правильно и удобно структурирована. И заказчик также несет меньше издержек на всех этапах — от проектирования до вывода из эксплуатации за счет контроля за различными параметрами и ресурсами объекта, а также ускорения формирования разных видов документации и повышения их качества. Одновременно ИМ выполняет требования законодательства и обеспечивает актуальными данными государственные информационные системы как часть цифровой вертикали».

Никита Чернов, директор по развитию «АР СОФТ», соглашается: для заказчика крайне важны сроки и расходы на этапе строительства. «Использование ТИМ-модели поможет как минимум на 10% сократить расходы за счет того, что она дает возможность обнаруживать коллизии и несоответствия на более ранних стадиях, чем при использовании 2D-чертежей. В этом им помогут различные CAD-программы, имеющие функционал автоматического поиска коллизий. То есть визуально можно оценить 3D-модель, насколько она реально соответствует плану реализации строящегося объекта. Также применение ТИМ-модели на этапе строительства приводит к тому, что по итогу самого строительства мы получаем соответствующую действительности 3D-модель, которую в дальнейшем можно использовать на этапе эксплуатации. Что нас приводит к системе 4D-BIM, 5D-BIM и т. д.», — говорит эксперт.

Отметим, что 4D-технология информационного моделирования относится к стадии строительства и активно применяется в России и мире. Для этого специалисты берут сводную информационную 3D-модель и синхронизируют ее с соответствующими работами в календарном плане строительства. По данным Марины Романович, клиент в 63% случаев запрашивает 4D-модель и оценивает результаты на четыре и пять баллов по пятибалльной шкале. Например, такую модель готовили для строительства спортивно-концертного комплекса на проспекте Юрия Гагарина в Санкт-Петербурге и для реконструкции ТЭЦ в Краснодаре. В других странах 4D-модель чаще всего заказывают для объектов стоимость от 20 млн евро и выше.

«4D-технология позволяет нам решать очень сложные задачи. Например, при строительстве подземно-надземного тоннеля, который пересекал существующие железнодорожные пути, мы разрабатывали несколько 4D-моделей, чтобы найти оптимальную стратегию строительства и разделить объект на участки. В результате выбрали оптимальную по срокам, стоимости и, конечно, соблюдению необходимого уровня качества», — приводит пример Марина Романович.

Эффективность от подобного подхода используют и крупные подрядчики сферы дорожного строительства. Например, специалисты «Автобан-Digital» разработали собственное программное решение с учетом специфики возведения линейных объектов. В результате внедрения на 25–30% сократилось время на формирование и согласование производственной программы, а на 35–40% повысилась точность распределения работ между подрядчиками. Впрочем, в целом по строительной отрасли цифры эффективности использования ТИМ на стройке несколько отличаются. Эксперты констатируют сокращение ошибок проектирования на 80%, сроков обработки документов в ЕИП — на 50%, повышение точности определения объемов СМР — на 45% и сокращение сроков строительства — на 10–15%.

«Застройщик может получить колоссальный эффект, — уверена Анна Николаева, генеральный директор компании-проектировщика ТИМ «БИМПРО». — Но когда мы говорим “ТИМ”, то нужно рассматривать два основных варианта, которые могут использоваться на стройке. Они дают примерно равный эффект, но в сумме определяют двойной». Первый — использование трехмерной модели, которая создается проектировщиком на специализированном ПО. Уже сейчас по ней застройщики проводят тендеры, то есть из модели автоматизированно выгружается большинство укрупненных объемов работ, в результате чего качество смет и расчетов становится выше, а тендеры проводятся более достоверно. Второй вариант использования ТИМ относится к оптимизации строительства. Это автоматизация процессов (может проходить с информационной трехмерной моделью или без нее), которая содержит цифровой график работ, стоимость работ, ведение электронной документации, электронный документооборот, выдачу заданий, просмотр проекта, выдачу итераций исполнительной документации и другие показатели. По расчетам «БИМПРО», эффект от ее использования варьируется от 7 до 20% экономии от стоимости строительства объекта.

 

Богатство отечественного рынка

Разработчики отмечают, что на рынке достаточно отечественных решений для активного использования информационного моделирования на стройке. «В качестве иллюстрации уровня готовности российских ТИМ можно назвать объекты, реализованные на основе информационного моделирования в отечественных продуктах. Это и бесперебойное электроснабжение на Крайнем Севере с помощью строительства воздушных линий электропередачи в Югре и Ямало-Ненецком автономном округе, и энергоцентр в Тульской области, и нефтеперекачивающая станция АО «Гипротрубопровод» площадью 12 000 кв. м, энергообъекты и котельные компании «Энерготехмонтаж», промышленные объекты АО «Гипровостокнефть»… Все это лишь небольшая часть проектов из нашего портфолио, созданных с помощью ТИМ и воплощенных в жизнь, — говорит Степан Воробьев, добавляя, что сфера гражданского строительства внедряет в работу новые технологии значительно медленнее. — Возникает встречный вопрос: а насколько эта отрасль строительства готова в плане финансов и кадров обращаться к ТИМ и использовать информационную модель? Динамика здесь очень неоднородная, и именно в этом поле находится значительная часть препятствий на пути к тому уровню массового применения ТИМ, которого всем ратующим за цифровизацию российского строительства хотелось бы достичь».

Анна Николаева добавляет, что на рынке присутствуют две группы продуктов для внедрения ТИМ в процесс строительства. Первая касается информационной модели, а вторая — оптимизации и автоматизации строительных процессов, которые могут и не использовать трехмерную модель. И картина по этим двум продуктам разная. «Если мы говорим о ТИМ-модели, ее внедрении и авторском надзоре по ней, то пока что недавно созданные российские продукты проигрывают конкурентам на международном рынке, особенно тем, что были разработаны давно: Autodesk, Revit Civil 3D. У них есть, конечно, российские аналоги (Renga Software), но на данный момент проектный бизнес не подтверждает соразмерность данных программ, российские ПО пока что отстают на пять-десять лет от зарубежных аналогов. Но если мы обратимся к стороне оптимизации строительства, а именно к стройке и автоматизации процессов, то здесь достаточно хорошего российского ПО», — говорит эксперт.

В то же время можно с уверенностью сказать, что российский рынок богат ПО российского производства. Многие ведущие застройщики выпускают собственные продукты, которые появляются в открытом доступе для изучения. Например, такое имеется у SetlCity, «Самолета» и других крупных застройщиков. Для компаний поменьше отечественная IT-отрасль предлагает готовые продукты, например для управления строительством подойдут «Адепт» и его аналоги.

«Интерес заказчиков к качественному ПО не просто есть, он активно реализуется нами и нашими коллегами по IT-отрасли. Российские компании, которые стремятся к технологическому лидерству, поэтапно цифровизируют свои подразделения, производственные процессы и процессы управления. Все это верно и для строительной сферы. Не так давно «Самолет» сообщал о тестировании робособак для мониторинга работ на площадке. Очевидно, что собранная роботами информация должна передаваться и обрабатываться с помощью IT-решений и в идеале интегрироваться в ту самую информационную модель. Чем доступнее будут становиться компоненты цифровых комплексов, тем более массовым станет такой подход. И мы готовимся к этому уже сейчас», — резюмирует Степан Воробьев.

При этом некоторые компании начали внедрять отечественное ПО еще до введения санкций. «За прошедшие три года произошли качественные изменения в области контроля СМР и управления строительством; работы и ведения документооборота в ЕИП и СОД; формирования и ведения ИД в электронных форматах. Мы это наблюдаем и на примере своих продуктов: постоянно растет количество пользователей Plan-R (календарно-сетевого планирования) и платформы Larix (от проверки BIM-моделей до формирования ведомостей и проведения тендеров), — говорит Андрей Андреев, главный инженер-технолог строительства Айбим. — Однако для большинства строительных организаций малого и среднего бизнеса достижение цифровой «зрелости», внедрение ТИМ и формирование команды специалистов — сложная и затратная задача. И проблема даже не в замещении иностранного ПО, а в выживании на конкурентном рынке. Впрочем, компании, которые затягивают с цифровизацией, рано или поздно станут точно не конкурентоспособными».

Никита Чернов подчеркивает, что проблемы внедрения ТИМ на стройку могут возникнуть не от нежелания заказчика, а от неготовности подрядчика, хотя сегодня программные продукты уже подстроены под разный уровень цифровой зрелости: «Чаще всего на строительных площадках возникают проблемы, что кто-то неправильно прочитал чертеж либо вообще его некачественно сделали. В итоге смонтировали, как поняли. А если бы у застройщика было визуальное представление об объекте, то таких проблем можно было бы избежать. И следовательно, когда объект будет на более поздней стадии строительства, не нужно будет исправлять какие-либо замечания. В “АР СОФТ” часто поступают запросы на разработку подобного ПО. Сейчас мы кастомизируем свои программные решения под запросы клиента. В итоге получается более качественный программный продукт для строительства». Например, уже сейчас компания располагает решением, которое позволяет сжать файл 3D-модели в 11–20 раз с сохранением всех атрибутов, чтобы была возможность открыть его на строительной площадке буквально на ноутбуке или мобильном устройстве с поддержкой LiDAR.

Впрочем, пока государство не обязывает всех привносить ТИМ на стройку. Чтобы не усугублять проблему нехватки квалифицированных кадров, в пункте 5.7 нового стандарта ГОСТ Р 57363-2023 оговаривается: уровень применения технологии определяется заказчиком в зависимости от потребностей проекта, квалификации и компетенции команды проекта, интегрального показателя зрелости применения ТИМ.


АВТОР: Светлана Лянгасова
ИСТОЧНИК ФОТО: ASNinfo