Ветровые электростанции


06.11.2023 09:00

Созданные ветряные электростанции в качестве источника энергии используют силу ветра. В результате обеспечивается выработка дешевой электроэнергии. Применение таких конструкций имеет высокую эффективность, поскольку перемещение воздушных масс идет постоянно, и этот источник энергии является возобновляемым. С течением времени использование ветровых генераторов становится все популярнее, что влечет за собой развитие данного направления. Выражается это в появлении новых разновидностей ветровых агрегатов, используемых в промышленности и для частных нужд.


Основные характеристики и принцип работы

Работа ветряных электростанций характеризуется следующими показателями:

  1. Мощностью. Это основной параметр ветровой электростанции. Мощность установки зависит от способности генератора вырабатывать электроэнергию при стандартной скорости ветра равной величине 12 м/с.
  2. Номинальным напряжением. Данная величина, которая также вырабатывается генератором, может изменяться в широких пределах. Она бывает 220 В, 12 В и 24 В.
  3. Мощности турбины. Данная величина зависит от диаметра турбины,
  4. Производительностью. Этот параметр позволяет определить количество вырабатываемой ветроустановкой электроэнергии в год.

При выработке электроэнергии важной величиной является диаметр турбины, которая должна выдержать сильные порывы ветра. Ее расчет ведется с учетом особенностей региона, поскольку в каждой местности перемещение воздушных масс обладает разной силой. При этом за базовую величину берется максимальная сила ветра.

Производителями выпускается большое разнообразие ветроустановок. При этом принцип действия у них всех одинаковый. Заключается он в следующем:

  1. В верхней части установки располагаются лопасти, задача которых состоит в захвате перемещающихся воздушных масс.
  2. При соприкосновении ветра с лопастями последние приводятся во вращение, которое передается на ротор генератора.
  3. Как только генератор начинает вращаться, между магнитами статора тут же происходит формирование электромагнитного поля, с последующим появлением в обмотках статора переменного электрического тока. Его создание происходит на основе физического явления электромагнитной индукции.
  4. На следующем этапе происходит образование постоянного тока путем прохождения его сквозь выпрямитель.
  5. Затем он снова преобразуется в переменной ток, частота которого составляет 50-60 Гц. Достигается это путем прохождения его через инвертор. Выработанная энергия поступает в электрические сети.

Из-за разного рельефа местности часто ветряные электростанции устанавливаются на высоких мачтах, поскольку близко к земле потоки воздуха не отличаются стабильностью, а также их сила уменьшается. При этом на высоте они дуют равномерно, что обеспечивает оптимальную эксплуатацию установки.

Разновидности по конструкции

Существует несколько видов ветрогенераторов, которые разделяются по конструкции и месторасположению. Каждая из них отличается своей особенностью и применяется с учетом конкретных условий. При этом принцип действия у всех ветряных электростанций одинаковый, основанный на использовании силы ветра.

Горизонтальные

Особенностью данного типа ветрогенераторов является расположение оси вращения в горизонтальном направлении. Это сложные устройства, отличающиеся высокой эффективностью. Такой конструкции ветрогенераторы выпускаются нескольких видов:

  1. С фиксированным углом наклона лопастей. Такого типа ветровые электрогенераторы можно встретить чаще всего. Их особенностью являются лопасти, расположенных с наиболее эффективным углом наклона, что позволяет их использовать при любой силе и скорости ветра.
  2. С регулируемым углом наклона лопастей. В таких ветровых установках есть возможность изменять расположение наклона лопастей. Это увеличивает универсальность оборудования и дает возможность подстраиваться под любую ветровую нагрузку.
  3. Саблевидной формой лопастей. Такие лопасти имеют особую геометрию, специально приспособленную под высокую скорость ветра.

Горизонтальные ветровые электростанции нашли наиболее широкое применение среди других типов оборудования.

Вертикальные

Это ветровые устройства, ось вращения в которых установлена вертикально. В результате у них отсутствует зависимость от направления ветра. Такие изделия имеют упрощенную конструкцию, но обладают меньшей эффективностью. Вертикальные агрегаты выпускаются следующих видов:

  1. С ротором Савониуса. Геометрия лопастей выполнена в виде синусоиды, что способствует формированию подъемной силой при попадании на них воздушных масс.
  2. Ветровая электростанция Дарье. В состав конструкции входит ряд лопастей, которые устанавливаются вдоль вертикальной оси. Они также имеют особую изогнутую форму, которая обеспечивает создание подъемной силы.
  3. Ветрогенераторы Фена. Лопасти устанавливаются на цилиндрической турбине и приводят ее во вращения под воздействием силы ветра.

Вертикальные ветровые электростанции также находят широкое применение в местах, где ветер может часто менять направление.

Роторные и карусельные

В роторных устройствах используются специальные узлы для улавливания ветра с дальнейшим превращением его в энергию. Оборудование имеет усложненную конструкцию, но обладает большой эффективностью. Такие ветрогенераторы могут работать в плохих погодных условиях. При этом их монтаж не вызывает сложности. Рассматривая недостатки, можно выделить небольшую высоту башни, что увеличивает риск разрушения лопастей. Также аппараты издают повышенный шум.

Высокой надежностью обладает и карусельное оборудование, принцип работы которого заключается в следующем:

  1. Движущийся воздух попадает через патрубок во вращающийся барабан ветрогенератора.
  2. При вращении барабана за счет центробежной силы вся присутствующая в воздухе пыль отбрасывается к боковым стенкам, а затем попадает в пылесборник. В результате воздух очищается и не загрязняет оборудование

Роторные и карусельные ветровые электростанции относятся к наиболее качественному оборудованию. Оно выполнено в соответствии со всеми технологическими требованиями, а почему необходимо придерживаться разработанных норм, не отклоняясь от стандарта, вы можете узнать здесь.

Типы ветровых электростанций

Важным моментом является место установки ветровых электростанций. В зависимости от этого они разделяются на виды:

  1. Прибрежные. Устанавливаются на некотором расстоянии от берега моря или океана. Именно в этом месте регулярно дует бриз, способствующий стабильности работы установки. Его присутствие обеспечено разностью температур между морской водой и поверхностью суши. В результате формирование ветра происходит днем и ночью, поскольку перемещение воздушных масс постоянно чередуется с морского побережья в сторону водоема, а затем в обратном направлении.
  2. Наземные. Установка таких ветровых электростанций ведется на возвышенных участках земли. Желательно, чтобы высота территории превышала 50 м. Очень удобными местами являются холмы. Формирование нужной площадки ведется на протяжении 7-10 дней. Основная сложность заключается в выборе местности, поскольку необходимо обеспечить подъезд строительной техники, а это связано с наличием дорог. Кроме того, длительность процедуры монтажа ветрогенераторов увеличивается за счет необходимости согласования всей документации в различных организациях.
  3. Шельфовые. Такие ветрогенераторы располагаются в море на расстоянии от берега в районе 60 км. К достоинству установок относится их месторасположение, когда не занимается полезная территория земли. Также они не видны с берега и при работе показывают хорошую эффективность. Их строительство ведется в местах, где присутствует небольшая глубина. Это необходимо для закладки свайного фундамента на глубину 30 м. Также под землей прокладываются подводные кабеля. Строительство шельфовых электростанций обходятся намного дороже, чем их наземные варианты. Для изготовления используются качественные материалы, поскольку в соленой водной среде они быстро покрываются коррозией. При строительстве таких сооружений специально используются самоподъемные корабли.
  4. Парящие. Особенностью конструкции таких ветровых электростанций является их расположение над землей. С помощью специальной оболочки, наполненной гелием, ветрогенератор поднимается на высоту несколько сотен метров. Внутри агрегатов расположены турбины мощностью до 40 кВт. Оборудование имеет множество преимуществ, но применяется редко из-за сложности его изготовления и монтажа.
  5. Плавающие. Это ветровые генераторы, выполненные в виде платформы с башней. Устройство опускается под воду на десятки метров, а верхняя часть возвышается над морской гладью. Для стабилизации системы внутри водоема используется специальный балласт, сделанный из гравия или любых камней. Для удержания оборудования на месте применяются якоря.
  6. Горные. Такое оборудование представляет собой обычные ветровые генераторы, только установленные в горах. Они характеризуются большой эффективностью, поскольку в горной местности всегда присутствуют сильные ветры.

Каждый тип ветрогенератора обладает своими особенностями и применяется в той местности, где от него можно получить максимальную отдачу.

Правила выбора

При выборе ветрогенератора нужно учитывать множество параметров оборудования:

  1. Мощность. Для этого необходимо рассчитать, какое количество электроэнергии необходимо для обслуживания данной территории. К полученному результату следует обязательно прибавить запас на случай возможных потерь.
  2. Тип оборудования. Обычно вопрос стоит перед выбором горизонтального или вертикального аппарата. В первом случае производительность агрегата будет выше, но это произойдет только при нужном направлении движения воздушных масс. Вертикальный вариант имеет меньшую эффективность, но занимает небольшое пространство и не зависит от направления ветра.
  3. Размер ротора. Здесь все зависит от необходимой производительности оборудования. Большого размера ротор значительно эффективнее, но требует наличия значительного пространства. Чтобы сделать правильный выбор, необходимо предварительно провести расчеты.
  4. Материал лопастей. Такие изделия могут изготавливаться из пластика, стали или алюминия. Металлические лопасти обладают большей прочностью, но и выше по цене. Оптимальным вариантом является пластик. По своим характеристикам он прочный и долговечный.
  5. Инвертор. Это прибор, в задачу которого входит преобразование переменного тока с целью зарядки аккумуляторов. Устройство может быть в составе ветрогенератора или установлено отдельно.
  6. Производитель. Здесь нужно выбирать надежного хорошо известного поставщика. При покупке такого дорогостоящего оборудования обязательно следует проверять гарантию и возможность его ремонтирования в сервисных центрах.
  7. Стоимость оборудование. Это обстоятельство также играет не последнюю роль и во многом зависит от бюджета хозяина.

Кроме перечисленных факторов обязательно нужно заранее определиться с местом установки оборудования. Здесь следует ориентироваться на территорию, насколько стабильно дуют ветры, и меняют ли они свое направление движения. Для этого необходимо выбрать возвышенность, где сила перемещения воздушных масс будет максимальной. В том случае, когда ветры дуют слабо, требуется подбирать соответствующее оборудование с высоким КПД.

Использование силы ветра как альтернативного возобновления источника энергии относится к перспективному направлению. Установленные в ряд ветрогенераторы дают хороший результат, но при изготовлении оборудования следует обращать внимание на качество его производства и ответственность работников. Об этом можно почитать здесь.


ИСТОЧНИК ФОТО: ASNinfo


В программном комплексе FROST 3D доступен расчет теплозащиты с XPS ТЕХНОНИКОЛЬ


19.05.2023 09:13

В пакете программ Frost 3D появилась возможность рассчитать теплозащиту инженерных сооружений при помощи XPS ТЕХНОНИКОЛЬ.  Этому способствовало тесное взаимодействие экспертов направления «Полимерная изоляция» ТЕХНОНИКОЛЬ и специалистов Научно-технического центра «Симмэйкерс», разработчика пакета программ для прогнозных расчетов при проектировании на многолетнемерзлых грунтах.


Программа Frost.Термо пакета Frost 3D позволяет создавать 3D геологическую модель грунтов любой сложности, после чего выполнять расчет температурного режима грунтов с учетом влияния зданий и сооружений, в том числе протяженных линейных объектов.

Наличие теплоизоляции ТЕХНОНИКОЛЬ в базе данных материалов дает возможность легко заложить расчетные параметры материала и определить оптимальный вариант защитных мероприятий для безопасной эксплуатации объектов на многолетнемерзлых грунтах.

С помощью программного комплекса Frost 3D можно проработать проектные решения и определить параметры применения экструзионного пенополистирола ТЕХНОНИКОЛЬ на многолетнемерзлых грунтах в следующих конструкциях: трубопроводы, земляное полото автомобильных и железных дорог, основания взлетно-посадочных полос, основания зданий и сооружений, шахты, тоннели, плотины и др. Все расчеты выполняются в соответствии с действующей нормативной документацией строительства.

В программу внесены расчетные характеристики всей линейки экструзионного пенополистирола ТЕХНОНИКОЛЬ, которые располагаются во вкладке Материалы базы данных материалов, физических свойств и условий теплообмена.

Источник: пресс-служба компании ТЕХНОНИКОЛЬ


ИСТОЧНИК: Пресс-служба компании ТЕХНОНИКОЛЬ
ИСТОЧНИК ФОТО: пресс-служба компании ТЕХНОНИКОЛЬ


Как проверить BIM-модели и избежать ошибок в строительстве


15.05.2023 10:01

Качественная BIM-модель — ключевой элемент при реализации строительных проектов. Она позволяет увидеть будущее сооружение еще до начала работ, спланировать их и убедиться в правильности проектных решений.


Проверка BIM-моделей

Не выявленные на ранних этапах ошибки могут привести к задержкам в строительстве, дополнительным затратам, а в некоторых случаях и к авариям на объекте.

Чтобы избежать этих проблем BIM-модель будущего объекта должна:

  • быть пригодной для использования на последующих этапах проекта;
  • отражать оптимальные проектные решения, отвечающие требованиям заказчика и нормативно-технических документов.

Очевидно, что для достижения этих целей, необходима тщательная проверка BIM-модели до начала ее использования: при определении стоимости строительства, планировании строительно-монтажных работ и других ответственных операциях.

Эффективное проведение таких проверок позволит:

  • минимизировать вероятность срыва сроков;
  • выявлять и исправлять неудачные проектные решения до начала строительно-монтажных работ;
  • оптимизировать использование материалов для экономии ресурсов;
  • обеспечивать возможность планирования строительно-монтажных работ на основе достаточных и достоверных данных;
  • минимизировать вероятности непредвиденного удорожания строительства.

Larix.Manager, разработанный компанией Айбим, позволяет автоматизированно проверить модель как на геометрические коллизии, так и на соответствие информационным требованиям заказчика (EIR) и требованиям нормативно-технических документов.

Этот программный продукт является частью платформы Larix, которая также включает в себя модули:

  • Larix.EST для формирования ведомостей объемов работ и бюджета строительства
  • Larix.CDB для ведения справочников видов работ
  • Larix.Tender для управления закупками
  • Larix.Contract для взаимодействия с подрядчиками и контроля выполнения обязательств

Larix.Manager может использоваться как в связке с другими модулями платформы, так и в качестве самостоятельного инструмента для аудита BIM-моделей.

 

Сводная BIM-модель

Larix.Manager позволяет собирать сводную (федеративную) модель из частных моделей, выполненных в различных САПР. Это дает возможность проверять решения как внутри одного раздела, так и выполнять междисциплинарные проверки. Ведь плохая координация между моделями различных разделов, выполняемых разными специалистами, отделами и даже проектными организациями, как раз и порождает большую часть ошибок, всплывающих на этапе строительства.

Larix.Manager принимает на вход модели в формате IFC, в который могут экспортировать практически все широко используемые САПР. Модели, выполненные в Autodesk Revit, Bentley, Renga и модели, собранные в Autodesk Navisworks, могут экспортироваться во внутренний формат Larix – IMC – с помощью специальных плагинов. Это позволяет исключить формирование промежуточного файла IFC между нативным форматом САПР и Larix.Manager и, как следствие, исключить возможную потерю и искажение данных, вызванных особенностями конвертации в IFC отдельными программными продуктами.

Но даже наличие модели с геометрией не обязательно для проведения некоторых автоматизированных проверок: в Larix.Manager можно загрузить книгу Microsoft Excel, в которой содержится информация о немоделируемых элементах и их параметрах, и выполнить проверку параметров элементов без геометрии.

Проверка параметров

Одним из важнейших критериев качества BIM-модели является корректность заполнения параметров. Их наличие и значения определяют, как можно использовать модель на последующих этапах проекта, насколько это будет эффективно.

Larix.Manager позволяет проверить наличие требуемых параметров у элементов, наличие у них значений и соответствие этих значений требованиям EIR, сводов правил и ГОСТ.

Текстовые параметры можно проверить на заполнение, содержание определенной последовательности символов, числовые – также и на соответствие значений определенному диапазону.

 

Проверка коллизий

В режиме «Проверка коллизий» можно отследить:

  • Пересечения. Например, пересечения элементов различных инженерных систем, отсутствие отверстий в стенах и перекрытиях и другие несоответствия, как правило, вызванные ошибками при моделировании и плохой координацией. Допуски пересечений можно задавать как по максимальному допустимому расстоянию, так и по максимально допустимому объему пересечения.
  • Дублирование. Поиск элементов с одинаковой геометрией и положением. Такие ошибки приводят к задвоениям при подсчете объемов работ, и их сложно найти визуально.
  • Минимальное расстояние. Поиск ошибок, выраженных в несоблюдении минимально допустимых расстояний между элементами. Например, несоблюдение нормативного расстояния между инженерными системами или недостаточная толщина слоя материала.
  • Минимальное расстояние в проекции. Проверка соблюдения минимального расстояния между элементами в плане (в проекции на горизонтальную плоскость). Часто в нормативных документах ограничивается расстояние в плановой проекции, а не в трехмерном пространстве. С помощью данной проверки можно найти, например, нарушения минимального расстояния между наружными инженерными коммуникациями, габаритов мостов и тоннелей по ширине, параметров поперечного профиля автомобильной дороги, расстояний от зон с особыми условиями использования территорий.
  • Расположение. Проверка вертикального расстояния между пересекающимися в плане элементами. Наряду с проверкой минимального расстояния и минимального расстояния в проекции помогает выявить проектные ошибки, выраженные в несоблюдении минимально допустимых расстояний. Также этот тип проверки позволяет найти такие трудные для обнаружения ошибки как неверное размещение элементов друг над другом (мокрое помещение над сухим, недостаточное возвышение низа пролетного строения моста над расчетным уровнем высоких вод).

Все описанные автоматизированные проверки реализуются с помощью гибко настраиваемых фильтров проверяемых элементов и условий проверки. Эти проверки сохраняются и загружаются из шаблонов, которые можно многократно использовать для моделей сооружений одного типа.

Результаты автоматизированных проверок формируются в отчеты в формате Microsoft Excel. Отчеты содержат в себе идентификаторы элементов, по которым к ним можно обратиться в программах разработки модели и в самом Larix.Manager. Отчеты по проверкам на коллизии сгруппированы по типам (пересечения, минимальное расстояние, проверка положения) и содержат эскизы элементов с обнаруженными коллизиями.

 

Визуальная проверка

К сожалению, не все можно проверить, пользуясь исключительно инструментами автоматизированного поиска ошибок. Многие проверки автоматизировать очень сложно или даже невозможно. Поэтому программный продукт, используемый для проверки BIM-моделей, должен также обладать удобными инструментами для визуального контроля.

Larix.Manager позволяет гибко управлять визуализацией BIM-модели:

  • Группировать элементы модели по значениям параметров и выстраивать дерево элементов любым удобным способом, отображая только элементы, необходимые для определенной задачи. Для различных целей можно создавать несколько типов группировки одной модели, сохранять их и применять, когда это необходимо.
  • Использовать инструменты скрытия, изоляции элементов, сечения.
  • Сохранять виды и добавлять комментарии к сохраненным видам, т.е. формировать замечания, выявленные в результате визуальной проверки.

 

Импортозамещение

Многие иностранные программные продукты, предназначенные для проверки BIM-моделей, например, Autodesk Navisworks и Solibri, ушли с российского рынка.

Со временем все труднее легально работать с зарубежным программным обеспечением. У многих компаний и вовсе нет возможности выбрать иностранные инструменты для работы ввиду специфики их объектов. Вопрос поиска отечественных инструментов взамен привычных зарубежных встает все острее.

Larix.Manager – полностью российская разработка, не использует Autodesk Forge и сервера, расположенные за пределами Российской Федерации. Это десктопное приложение, работающее с файлами на компьютере пользователя или сервере на усмотрение пользователя.


АВТОР: Дамир Ильясов
ИСТОЧНИК ФОТО: ASNinfo
РЕКЛАМА: bim-info.ru