Солнечные батареи


31.10.2023 10:58

Солнечные батареи относятся к альтернативной энергетике, позволяющей получать дешевое электричество. Это очень перспективное направление из-за неисчерпаемости потока солнечных лучей. Батареи имеют вид плоских панелей, устанавливаемых в местах наиболее сильного падения лучей Солнца. Эффективность метода получения энергии позволяет вести ее использование во множестве сферах деятельности, что является серьезным заделом на будущее, поскольку стандартные ресурсы постепенно исчерпываются.


Устройство и принцип действия

Основу солнечной батареи составляют полупроводниковые устройства, способные преобразовывать падающие лучи в электрический ток. Производимые солнечные батареи бывают разных размеров, что зависит от места их установки. Масштабное оборудование крепится на крышах домов или автомобилей, а более мелкие приборы встраиваются в микрокалькуляторы. Обычно большие солнечные панели сверху покрываются стеклом. Это необходимо для защиты их от воздействия внешней среды и фотонов, которые обладают чересчур мощной энергетикой.

Устройство приборов

В состав солнечной батареи включены следующие элементы:

  1. Фотовольтаические ячейки. Данные компоненты выполняют основную функцию в батарее. Их задача состоит в преобразовании потока лучей в электричество с помощью фотовольтаического эффекта. Его суть заключается в формировании электрического заряда, что обеспечивается свойствами полупроводникового материала.
  2. Абсорбер. Это специально изготовленный из кремния слой, обладающий способностью поглощать солнечный свет с последующей передачей на фотовольтаическую ячейку для преобразования его в электричество.
  3. Покрытие. Оно необходимо для того, чтобы защищать фотовольтаические ячейки от влияния непогоды и механических повреждений.
  4. Стекло. Кроме защитной функции оно выполняет еще роль изоляции для сохранения внутри ячейки тепла.
  5. Контактные площадки. С помощью таких металлических элементов обеспечивается связь между фотовольтаические ячейками и проводами.
  6. Провода. Формируют связь между всеми элементами солнечной батареи.
  7. Инвертор. Проводит изменение постоянного напряжения в переменную величину. Это требуется для того, чтобы обеспечить питание электрических приборов.
  8. Аккумулятор. Является емкостью, где хранится избыток вырабатываемой энергии.
  9. Контроллер заряда. Устройство, необходимое для контроля величины заряда аккумулятора.

Чтобы солнечная батарея работала нормально, все компоненты должны работать в полном взаимодействии.

Принцип действия

Принцип работы солнечной батареи основывается на фотовольтаическом эффекте. Суть его заключается в том, что под воздействием света определенные материалы способны создавать на своей поверхности напряжение, что сопровождается выработкой электричества.

Происходит это за счет того, что световые фотоны выбивают из атомов отрицательные электроны, превращая их в положительно заряженные ионы. После этого формируется электрический ток, представляющий собой движение положительно и отрицательно заряженных частиц.

Работа солнечной батареи состоит в следующем:

  1. После попадания света на солнечную панель происходит его поглощение кремниевыми ячейками.
  2. Электроны выбиваются из атомов и становятся свободными. Одновременно они вместе с положительно заряженными ионами переходят в возбужденное состояние.
  3. Все образовавшиеся частицы начинают свое направленное движение между контактными пластинами через полупроводник. Как результат формируется электрический ток, перемещающийся в дальнейшем по электрическим сетям. При этом его излишки собираются в аккумуляторной батарее.

Что представляют собой электрические сети и как в них поступает электроэнергия, можно узнать из этой статьи.

Разновидности оборудования

Производителями выпускается несколько разновидности солнечных батареи, каждая из которых обладает своими особенностями:

  1. Монокристаллические. Изготавливаются такие батареи из чистого кремния. Сначала материал расплавляется, а после отвердевания разделяется на пластинки толщиной 300 мкм. Все ионы и электроны в таких батареях обладают хорошей эффективностью, что отражается на высоком КПД оборудования. В пластинках вставлены электроды, которые выглядят в виде сеток. Монокристаллическое оборудование обычно окрашивается в темно-синий или черный цвет. Это качественные изделие со сроком службы до 50 лет.
  2. Поликристаллические. Основу солнечной батареи составляет не цельный кристалл кремния, а множество его маленьких кусочков. Это значительно удешевляет оборудование, но и делает его работу менее эффективной, что выражается в пониженном КПД, равном 13-15%. За счет более низкой цены на такие панели присутствует увеличенный спрос.
  3. Тонкопленочные. В состав данного типа оборудования входит множество разных элементов, среди которых кадмий и одна из разновидностей кремния. Оборудование значительно уступает предыдущим двум видам, но имеете хорошую гибкость, и может быть установлено на любой поверхности. Популярность таких батарей выражается в том, что они могут функционировать при любой погоде, включая облачность или низкое освещение.
  4. Органические. Здесь исходными составляющими могут быть различные полимеры, а также углерод. Оборудование обладает эффективностью, но имеет невысокий срок службы и пока не получило широкого распространения.
  5. Нанокристаллические. Для изготовления этого типа батарей применяется новаторская технология. В качестве основы используются наночастицы элемента кремний. Полученные фотоэлементы характеризуются качеством, что отражается на их долговечности и эффективности, но данный метод еще не совершен для полноценной эксплуатации.

Из всех видов солнечных батарей наибольшей непопулярностью пользуется поликристаллический вариант и в первую очередь это связано с его доступностью по цене.

Характеристики солнечной батареи

Все солнечные батареи характеризуются следующими параметрами:

  1. Мощность. Это основной показатель солнечной батареи. Он измеряется в ваттах и указывает, сколько электроэнергии производит данная солнечная панель за единицу времени.
  2. Напряжение. Данная величина, измеряемая в вольтах. Она фиксирует разность потенциалов между точками батареи и может равняться 12, 24 или 48 В.
  3. Ток. Здесь говорит о количестве электричества, которое в течение единицы времени протекает через панель.
  4. Эффективность преобразования. Определяется отношением полученной на выходе электрической энергии к количеству поглощенных батареей солнечных лучей. Диапазон может составлять 5-25%.
  5. Размер. В зависимости от типа батареи он может составлять от 1 м² до 6 м².
  6. Вес. Масса солнечных батарей достигает 10-50 кг.
  7. Рабочая температура. Чтобы солнечная панель работала эффективно, данный интервал должен составлять от (-40)° до (+85)°. При увеличении этого параметра отдача панелей может снижаться
  8. Срок эксплуатация. При хорошем обслуживании в среднем солнечная батарея используется на протяжении 30 лет. При этом у лучших вариантов это срок увеличивается до 50 лет.

Также важным параметрам является тип ячейки. Он зависит от вида панели.

Правила выбора

При желании установить солнечную батарею необходимо принимать во внимание следующие факторы:

  1. Потребность в электроэнергии. После определения этой величины необходимо добавить еще до 30% на случай потерь.
  2. Тип батареи. Здесь в первую очередь нужно ориентироваться на размер финансов. Наиболее эффективные монокристаллические панели, но они и стоят дорого. Если средств недостаточно, то стоит обратить внимание на поликристаллический или тонкопленочный вариант.
  3. Мощность. Это основной параметр, на основании которого выбирается солнечная батарея. Мощности должно быть достаточно, чтобы панель обеспечивала выработку нужного количества электричества для дома.
  4. Место установки. Обычно солнечные батареи устанавливают на крыше, поскольку данная территория максимально освещенная. При этом нужно ориентироваться на такой параметр как угол наклона поверхности, который должен составлять в районе 35-45°.
  5. Площадь панелей. Данная величина определяется расчетным способом. Для этого нужно взять отношение всех потребностей в электричестве к выработке энергии единицы панели за сутки.

Обязательно необходимо обратить внимание на производителя. Это должна быть авторитетная компания с большим количеством положительных отзывов.

Эксплуатация и обслуживание

После установки солнечных батарей, чтобы они прослужила долго, необходимо уделять внимание их обслуживанию:

  1. Постоянно исследовать панели на предмет наличия загрязнений. Поверхность должна быть очищена от пыли и осевших насекомых. Эффективность работы батарей увеличивается в том случае, когда их поверхность чистая.
  2. Во время очищения панелей от грязи следует использовать только теплую воду и мягкую ткань.
  3. Регулярно следить за качеством работы инвертора, который преобразовывает выработанный постоянный ток в переменную величину.
  4. Периодически вести проверку надежности работы всех систем.
  5. С течением времени менять отдельные вышедшие из строя элементы для обеспечения высокой производительности системы.

При правильной эксплуатации и хорошем обслуживании солнечных батарей они прослужат несколько десятков лет и обеспечат дом дешевой электроэнергией.

Применение батарей

Солнечные батареи применяются в широких сферах деятельности:

  1. В системах электроснабжения автономного типа. Чаще всего устанавливаются в частных домах или дачах. Это часто делается в тех случаях, когда объекты удалены от центрального электроснабжения.
  2. Для освещения территорий. Сюда включаются уличные фонари, размещаемые в парках или вдоль улиц.
  3. В автомобилях. Обычно они крепится на крышах транспортных средств, и используются для зарядки аккумуляторов.
  4. Как возобновляемая энергетика. Оборудование устанавливается в ветросолнечных электростанциях и используется как источник энергии.
  5. В системах связи. Небольшого размера панели, встроенные в приборы, используются как источники питания.
  6. В бытовых приборах. Сюда относятся холодильники, вентиляторы и другие агрегаты, которые в качестве источника питания используют солнечную энергию. С этой целью в них встраиваются небольшие панели.
  7. В качестве источника питания при установке видеонаблюдения.

Кроме того, солнечные батареи уже начинают использоваться в глобальном плане. Они стали применяться в космонавтике и самолетостроении, что позволяет существенно экономить топливо.

Преимущества и некоторые недостатки

Солнечные батареи с течением времени становится все доступнее, поскольку цена на них постоянно снижается. Однако, покупая такие изделия, необходимо предварительно хорошо ознакомиться с преимуществами и недостатками панелей. К достоинствам солнечных батарей относятся:

  1. Экологическая безопасность. Работа солнечных батарей не приносит окружающей среде никакого вреда. Это является очень важным моментом, поскольку экология в современном мире играет решающую роль. Подробная информация об экономическом аспекте хорошо изложена в этой работе.
  2. Быстрая окупаемость. Рост стоимость электроэнергии наблюдается непрерывно. Что касается солнечных батарей, то здесь затраты присутствуют только в момент покупки и установки оборудования. Поскольку солнечная энергия является бесплатной, вложенный капитал очень быстро окупается.
  3. Простота использования. После окончания монтажа оборудования требуется только следить за его исправностью и вовремя устранять поломки. Это не несет больших затрат сил и времени.

Если обратить внимание на недостатки, то здесь стоит отметить большую стоимость оборудования. При этом следует помнить, что его окупаемость наступает очень быстро.

Солнечные батареи выгодно ставить только в регионах с продолжительным световым днем. При большой длительности ночи такое оборудование можно использовать только в качестве дополнительного источника электроэнергии.


ИСТОЧНИК ФОТО: ASNinfo

Подписывайтесь на нас:

В формате замещения. Рынок пенополистирола


18.02.2020 08:30

В настоящее время, по данным экспертов, продолжается сокращение производства и потребления вспененного пенополистирола. Освободившуюся нишу все активнее заменяет экструдированный вид этого теплоизоляционного материала.


Пенополистирол широко применяется в строительстве новых зданий и сооружений, а также при отделке помещений. В объеме потребления теплоизоляционных материалов его доля достигает 30%. По оценке экспертов, в ближайшей перспективе она будет постепенно увеличиваться и через 5-7 лет достигнет показателя в 40%.

Генеральный директор АПРИ «Флай Плэнинг» Владимир Савченков отмечает, что главными плюсами пенополистирола являются: широкая сфера применения (от утепления подвальных помещений до использования на балконах, лоджиях и фасадах), а также долговечность, высокие теплоизоляционные свойства, легкость в применении, экологичность и доступная цена. «В качестве недостатков можно указать следующее: это легковоспламеняющийся материал, он разрушается под долгим воздействием солнечных лучей, также он отличается хрупкостью. Поэтому при транспортировке и использовании нужно соблюдать меры предосторожности. Но стоит отметить, что указанные недостатки с лихвой покрываются достоинствами. Это современный технологичный материал с универсальными свойствами и широким перечнем возможностей», – считает он.

Путем продавливания

Отметим, что пенополистирол, как теплоизоляционный материал, подразделяется на два вида: вспененный (EPS) и экструдированный (XPS). Производители данных продуктов между собой достаточно жестко конкурируют.

Согласно исследованию аналитического агентства DISCOVERY Research Group, по итогам трех кварталов 2019 года, объем рынка (производство и потребление) EPS в нашей стране составил 5,49 млн куб. м, XPS – 6,21 млн куб. м. В том числе российскими компаниями за данный период времени было экспортировано 6 тыс. куб. м вспененного пенополистирола и 120 тыс. куб. м экструдированного.

Экструдированный пенополистирол, как рассказывает руководитель направления «Полимерная изоляция» корпорации ТЕХНОНИКОЛЬ Алексей Касимов, создается из полистирола общего назначения (ПСОН) методом экструзии (путем продавливания вязкого расплава материала). В результате получается равномерная мелкопористая структура, что придает материалу прочность, практически нулевое водопоглощение и низкий показатель теплопроводности.

«Экструдированный пенополистирол может применяться в заглубленных конструкциях: фундаменты, подвалы, подземные паркинги, где эффективно защищает фундамент от теплопотерь и разрушительных сил морозного пучения. Также особенностью экструзионного пенополистирола является то, что он может использоваться при температуре от –70°С до +75°С. Благодаря этому материал активно используют в холодильных установках, катках и пр. В целом мы отмечаем ежегодное сокращение рынка EPS, при этом освободившуюся нишу замещает XPS», – добавляет Алексей Касимов.

Отвечая новым требованиям

Эксперты считают, что рост потребления экструдированного пенополистирола связан с трендом повышения энергоэффективности зданий. В частности, стандартный слой плит из этого материала в 50 мм сохраняет тепло в помещении так же, как метровая кирпичная или бетонная стена  толщиной 2,5 м. Также XPS все активнее применяется в дорожном строительстве для предотвращения морозного пучения полотна. Материал препятствует промерзанию грунта и значительно увеличивает срок эксплуатации дорожного покрытия. Кроме того, экструдированный пенополистирол более прост в переработке – и его производители могут заниматься выпуском вторичных продуктов.

В целом, как отмечают игроки рынка, применение XPS позволяет существенно усовершенствовать и ускорить технологию строительства, значительно снизить затраты при создании новых конструкций, отвечающих новым требованиям строительных норм.

При этом они подчеркивают, что EPS как теплоизоляционный материал не уйдет с рынка совсем. Он останется востребован в бюджетном строительстве и утеплении малоэтажных индивидуальных домов. Кроме того, за счет совершенствования технологий производства этого материала будут повышаться его качественные характеристики и расширяться область применения.

Кстати

С 1 января 2020 года, в соответствии с приказом Росстандарта, в общероссийском классификаторе ОКПД 2 выделены отдельные коды для теплоизоляционных плит из пенополистирола, сэндвич-панелей с пенополистиролом и сэндвич-панелей с минеральной ватой. Предполагается, что это новшество поможет лучше идентифицировать теплоизоляционные продукты в области их применения, а также повысит качество сбора статистической информации, необходимой в том числе для оказания мер господдержки. Изменения в классификаторы подготовлены на основании предложений технической рабочей группы «Ассоциация производителей и поставщиков пенополистирола» в рамках научно-технического совета по развитию промышленности строительных материалов, изделий и конструкций при Минпромторге РФ.


АВТОР: Виктор Краснов
ИСТОЧНИК: СЕ №3(902) от 17.02.2020
ИСТОЧНИК ФОТО: Пресс-служба «ТЕХНОНИКОЛЬ»

Подписывайтесь на нас:

С точностью до миллиметра. Лазерное сканирование в геодезии


17.02.2020 10:00

Лазерное сканирование, несмотря на необходимость использования сравнительно дорогостоящего оборудования, все активнее применяется в геодезии, проектировании и строительстве сооружений.


Технологии проведения инженерных изысканий не стоят на месте. Специа­листы рынка считают, что в настоящее время одним из самых быстрых и точных методов получения характеристик о сооружении и месте, где оно будет или уже расположено, является лазерное сканирование. Применять в России эту технологию в единичных случаях начали 10–15 лет назад. Сейчас лазерное сканирование уже распространено, хотя чаще всего специалисты используют более традиционные приборы.

Практично и выгодно

Руководитель направления капитального строительства IТ-компании КРОК Анна Фейнберг отмечает, что принцип технологии лазерного сканирования заключается в измерении расстоя­ния от сканера до поверхности объекта и формировании на основе этого облаков точек с пространственными координатами. «Современные модели лазерных сканеров позволяют вести съемку со скоростью более миллиона точек в секунду и высокой точностью. В результате получается цифровая копия объекта, что позволяет использовать полученные данные для создания обмерных чертежей. Также это позволяет создать цифровую модель здания. Технология лазерного сканирования довольно популярна, поэтому, например, в Москве, проблем с тем, чтобы найти необходимое оборудование, не возникнет. При этом не все компании обладают компетенциями, позволяющими построить на основе облаков точек BIM-модель здания и затем вести в едином информационном пространстве работы, связанные с модернизацией и эксплуатацией здания», – добавляет она.

Именно возможность создания трехмерной цифровой визуализации, с последующим использованием в связке с BIM-технологиями, считает основным преимуществом лазерного сканирования генеральный директор компании «КБК Проект» Василий Костин. «Лазерное сканирование – это прежде всего сокращение сроков работ при увеличении точности. Что особенно важно при реализации новых проектов с точной географической привязкой. При этом в сравнении с традиционными методами экономическая выгода от использования технологии составляет 40–80%», – отмечает он.

Полевое лазерное сканирование, применяемое в геодезии, проектировании и строительстве, можно подразделить на три подвида: наземное, мобильное, воздушное. Выбор производят специалисты, в зависимости от особенностей работ.

Заместитель генерального директора ООО «Гильдия Геодезистов» Сергей Лазарев отмечает, что наиболее широкое распространение получило наземное лазерное сканирование, в связи с универсальностью и простотой метода, разнообразием и более низкой ценой оборудования. Оно наиболее активно используются в строительстве (строительный контроль, авторский надзор), ведении маркшейдерских работ (подсчет объемов, регулярные замеры и съемки), осуществлении реконструкции геометрически сложных объектов наследия.

«Ручные сканеры получили широкое распространение при исследовании протяженных объектов, а также небольших закрытых помещений, складов. Воздушное лазерное сканирование имеет самую высокую стоимость оборудования при существенных рисках поломок. Поэтому большого распространения оно пока не получило. Но исследовательско-конструкторские центры активно ведут работы по удешевлению такого оборудования, и в дальнейшем оно может практически полностью вытеснить аэрофотогеодезию с рынка», – прогнозирует Сергей Лазарев.

Широкий выбор

В настоящее время производителями отраслевых систем лазерного сканирования являются только зарубежные компании. На рынке представлены такие бренды, как Leica, Trimble, Topcon, Z+F, Riegl, Faro и др. В силу изначальной сравнительно высокой стоимости этой техники многим геодезическим и проектным организациям, особенно небольшим, она оказалась не по карману. Но в последние три-четыре года предыдущие линейки приборов подешевели и стали доступнее. Кроме того, на рынке практикуется аренда или покупка бывшего в употреблении лазерного оборудования.

Ценовые сегменты очень разные и зависят от предъявляемых к технике требований, рассказывает Сергей Лазарев. К примеру, наземный лазерный сканер Leica BLK360 имеет низкие точностные характеристики, невысокую дальность и соответственную низкую цену, порядка 2 млн рублей. Наиболее точный и «дальнобойный» (до 1 км) сканер Leica ScanStation P50 стоит уже около 15 млн. Необходимо также учитывать и цену программного обеспечения для обработки данных, она варьируется от 100 тыс. до 2 млн рублей. «На мой взгляд, наиболее технологичным оборудованием на рынке сегодня является наземный лазерный сканер Leica RTC360. Этой весной должна выйти на рынок новинка – Trimble X7, представленная в 2019 году на выставке InterGeo. Предположительно, она будет иметь более низкую стоимость при сравнимых характеристиках и сможет составить конкуренцию», – считает эксперт.

По мнению ведущего специалиста ООО «Геодезические приборы» Григория Жукова, лазерный сканер GLS-2000 японской компании Topcon, благодаря своим характеристикам и стои­мости, на сегодняшний день является одним из наиболее универсальных и распространенных решений для лазерного сканирования. «Помимо высокой скорости, точности, возможности работы при минусовых температурах, прибор обладает большой дальностью съемки – до 350 м. Это делает его универсальным при выполнении самых разных работ. Такая особенность позволяет легко применять этот сканер при съемке городских территорий и насыщенных объектами промышленных зон, а также для съемки фасадов зданий, архитектурных памятников и многого другого. Прибор автономен и не требует дополнительных средств управления и сохранения данных. Все установки сканирования выполняются через встроенную панель управления, а данные накапливаются на обычной карте памяти стандарта SD», – добавил он.

Мнение

Сергей Лазарев, заместитель генерального директора ООО «Гильдия Геодезистов»:

– Главной технологической задачей геодезиста является предоставление достоверной и максимально полной информации о положении объекта в пространстве и его геометрических характеристиках. Основным видом оборудования, позволяющим в максимально быстрые сроки собирать большой объем информации, являются именно лазерные сканирующие системы. Они позволяют получить облако точек, в котором можно отследить огромное количество параметров исследуемого объекта.

Григорий Жуков, ведущий специалист ООО «Геодезические приборы»:

– Внедрение технологии лазерного сканирования позволяет получить массу преимуществ по сравнению с традиционными методами съемки. Основными ее достоинствами являются высокая скорость выполнения измерений, детальность съемки, а также полнота и точность получаемых результатов. Можно с уверенностью сказать, что эта технология открывает новые возможности для работы и дает необходимую информацию для развития современного метода трехмерного проектирования объектов.


АВТОР: Виктор Краснов
ИСТОЧНИК: СЕ №3(902) от 17.02.2020
ИСТОЧНИК ФОТО: https://u-f.ru/

Подписывайтесь на нас: