Линии электропередач: виды линий и конструкций
ЛЭП расшифровываются, как линии электропередачи. Эти конструкции являются важным элементом в энергетической системе любой инфраструктуры. ЛЭП способны передавать электроэнергию по прочным проводам из металла. Линейные входы и выходы считаются точками начала и конца линий электропередач, а для ветвления используется специальная опора и линейный вход.
По ЛЭП также обмениваются информацией с помощью высокочастотных сигналов. Применяются они для передачи телеметрических данных, сигналов релейной защиты и противоаварийной автоматики, а также для диспетчерского управления.
Какие бывают ЛЭП?
Проводником для передачи электроэнергии выступает медь или алюминий. Все ЛЭП можно разделить на 3 большие группы, которые зависят от способа прокладки проводов. Выделяют воздушный способ с прокладкой по воздуху, кабельный с прокладкой в грунте или воде и газоизолированный способ с изоляцией проводов газом. Все перечисленные способы являются основными при монтаже, однако сегодня существуют разовые попытки передавать электроэнергию без проводов. Такой способ обеспечения энергией применяют только для маломощных устройств. Несмотря на применение беспроводного варианта передачи электроэнергии, кабельные и воздушные ЛЭП остаются самым распространенным способом для поставки потребителю энергии.
В последнее время для городских инфраструктур чаще устанавливают газоизолированные сети для передачи больших мощностей. Такой подход позволяет экономить площадь для ЛЭП и соответствовать уровню экологии на участке. Кабельные линии обустраивают в местах, где затруднителен монтаж воздушных. Однако воздушные линии остаются более востребованными из-за меньшей цены для производства и лучшей ремонтопригодности. Узнать больше об используемых линия электропередач можно в новостном блоке.
Кабельные линии электропередач и их виды
Как было описано, кабельные ЛЭП монтируют при плотной застройке. Они представляют собой несколько линий, установленных рядом друг с другом в параллельном направлении. Между участками кабеля устанавливаются муфты.
Классификация кабельных ЛЭП происходит по таким же принципам, как и у воздушных сетей, а отличительные особенности сводятся к минимуму. Так, по способу прокладки кабельные разделяют на подземные, подводные и по сооружениям. В число ЛЭП по сооружениям входят:
- кабельные туннели в виде закрытых просторных коридоров;
- кабельные каналы, в которых человек уже не может передвигаться;
- кабельные шахты, представляющие из себя вертикальный коридор;
- камера, которая представляет собой закрытое подземное сооружение;
- эстакада в виде горизонтального открытого сооружения;
- галерея, которая похоже на эстакаду, но является закрытым типом.
Также кабельные ЛЭП классифицируют по типу изоляции, выделяют твердую и жидкостную изоляцию. К твердому относят изоляционные оплетки из полимеров, а к жидкостному — нефтяное масло. Реже для изоляции используют специальные газы или другие твердые материалы.

Воздушные линии электропередач
Воздушные линии электропередач — это комплексная конструкция, которая используется для перемещения энергии по кабелям, расположенным на открытом воздухе. Кабели удерживаются на опорах и защищены охранной зоной.
Воздушную сеть могут установить почти на любой местности с разными атмосферными условиями, будь то резкие перепады температур или большое количество осадков. Однако при монтаже акцентируют внимание на погодных явлениях, учитывают особенности участка для прокладки и прочие параметры. Установка воздушных линий должна соответствовать следующим нормам:
- высокая проводимость электричества;
- выгодная стоимость;
- устойчивость к повреждениям и коррозии;
- безопасность для человека и окружающей среды.
Главная сложность конструкции заключается в обеспечении безопасности при монтаже и эксплуатации, так как линии электропередач находятся на обширном и свободном пространстве.

Из чего состоят установки ВЛЭП: опоры и другие элементы
Любая воздушная линия электропередач состоит из проводов, опор, изоляторов, арматуры, грозозащитных тросов, разрядников и заземления. К основным элементам опор для сети электропередач относят:
- фундамент;
- стойки;
- подкосы;
- растяжки.
Наличие других составных элементов, в виде заземляющих устройств, зависит от вида ВЛЭП и других параметров. Также для основного списка используется вспомогательное оборудование и дополнительные способы связи.
Для удержания конструкции ВЛЭП используют опоры. Самым бюджетным вариантом являются обычные деревянные столбы, однако их применяют только для линий с напряжением до 35 кВт. Для конструкций с напряжением выше применяют опоры из железобетона, а сами провода поднимают выше, расстояние между фазами увеличивается. На опорах размещают системы защиты от молний и реакторы. Система защиты представляет из себя трос и штыревые молниеотводы.
Выделяют промежуточные и анкерные конструкции ВЛЭП. Последние монтируют только в начале и конце линии. На пересечениях линий электропередач с водными артериями и другими подобными объектами применяют переходные анкерные опоры. Это самые высокие и масштабные конструкции, которые достигают в высоту 300 метров.
Промежуточные опоры занимают меньше места и применяются для прямых участков трасс. По назначению выделяют транспозиционные, перекрестные, ответвительные, повышенные и пониженные опоры. Несмотря на разделение, при монтаже каждую сеть адаптируют к условиям рельефа участка и его климату.
Для установки ВЛЭП используют арматуры, которые необходимы для соединения проводов и крепежа их на опорах. Иногда для конструкции используют разрядники, предотвращающие поломку во время штормового ветра или других погодных условий.

Провода для воздушных линий
Провода для воздушных линий электропередач должны обладать высоко механической прочностью. Их разделяют на 2 класса: изолированные и неизолированные. Провода создают в виде однопроволочных, которые состоят из одной жилы и применяются только для сетей с низким напряжением, и многопроволочных проводников.
Многопроволочные применяются для воздушных ЛЭП и могут быть выполнены из сплавов, стали или меди. Чаще в основе проводов используют алюминий или сплавы на его основе. Многопроволочные провода представляют собой скрученные стальные жилы, поверх которых располагается выбранный материал, будь то сплав, алюминий или медь. Чтобы провода не поддавались коррозии, их покрывают цинком. О других материалах и технологиях в строительстве можно прочитать на соответствующей вкладке.
Выбор сечения проводов происходит на основе мощности при падении напряжения и исходя из механических характеристик. Ответвления выполняются изолированными проводами. Полученное изделие состоит из стального троса и изоляционного покрытия, которое защищает от атмосферных явлений. Соединения готовых проводов монтируют на участках, которые не подвержены механическим воздействиям. Монтаж происходит с помощью их обжатия или сваривания.
Технические характеристики воздушных линий электропередач
При проектировании и установке воздушных линий учитываются следующие характеристики:
- длина проводов между соседними стойками;
- расстояние удаления фазных проводников друг от друга и от земли;
- длина изоляторов, которая будет соответствовать номинальному напряжению;
- полная высота опор.
С повышением номинальной мощности все параметры увеличиваются. Чтобы воздушные линии работали стабильно во время грозы или других погодных явлений, над фазными проводами проводят стальной или алюминиевый молниеотвод в виде троса, который заземлен на опорах. Также защиту от перенапряжения обеспечивают вентильные разрядники, помогающие сети перераспределять грозовой импульс на опору, не повреждая изоляции. Опоры, в свою очередь, уменьшают сопротивление за счет заземляющего устройства.
Классификация линий передач
Помимо перечисленных 3 основных групп, ЛЭП разделяют по виду расположения кабелей и функциям конструкции. По расположению кабелей выделяют воздушные, находящиеся над поверхностью, и закрытые, которые располагаются в кабель-каналах. Также линии электропередач можно разделить по способу передачи тока и монтажа, роду тока, режиму работы, охвату территории и назначению.
Линии передач переменного и постоянного тока
Линии электропередач переменного тока используют для передачи энергии с минимумом потерь. Подобные линии применяют для передачи энергии на дальние расстояния. Их часто используют в Европе, реже — в России. Также вид ЛЭП используют для оборудования железных дорог.
На линиях электропередач с постоянным током энергия всегда распределяется вне зависимости от направления и сопротивления. Вид ЛЭП в большей части используется в России. Установки с постоянным током легче монтировать и эксплуатировать, однако конструкция способствует потере тока при перемещении.
Виды ЛЭП по режиму работы и охвату территории
По режиму работы выделяют линии электропередач с глухозаземленной и изолированной нейтралью, а также с резонансно-заземленной и эффективно-заземленной нейтралью.
По охвату территории сети разделяют на:
- сверхдальние, которые предназначены для региональных систем и напряжением свыше 500 кВт;
- магистральные для соединения электростанций с распределительными сооружениями и напряжением в 220 или 330 кВт;
- распределительные, которые устанавливают для поставки энергии крупным потребителям с напряжением в 35-150 кВт;
- подводящие или питающие, обеспечивающие энергоснабжение городских, промышленных и сельскохозяйственных потребителей и напряжением ниже 20 кВт.
Воздушные линии электропередач бывают радиальными, замкнутыми и с резервным источником питания. По количеству параллельных цепей ЛЭП разделяют на одно-, двух- и многоцепные сети. Если цепи имеют разные значения напряжения, то такую воздушную сеть называют комбинированной.
Охранная зона ЛЭП
Для правильной эксплуатации линий электропередач, ремонта, функционирования и обеспечения сохранности сети вводятся хоны с специальным режимом использования. Поэтому воздушные линии электропередач — это не только участок земли, но и воздушное пространство над сетью.
Специалисты строительных работ запрещают работать в охранных зонах грузоподъемной технике, а также возводить здания и сооружения. Минимальное расстояние от сети электропередач определяется напряжением. Так, для номинального напряжения в 35 кВт размер охранной зоны составляет 15 м, а для величины в 350 кВт расстояние уже будет равно 30 м.
Документами по эксплуатации определяется наименьшее удаление сети от поверхности земли, а также от жилых или производственных построек. Монтаж высоковольтных трасс запрещен над крышами зданий, стадионов, общественных мест и детских учреждений.

Обслуживание и монтаж
Процесс возведения сооружения воздушных линий электропередач состоит из подготовительной, строительно-монтажной и пусковой работы. Подготовительная работа сводится к закупу оборудования и материалов, конструкций, подготовке трассы, изучению цельного проекта и разработке плана производства монтажных работ.
На этапе монтажных работ происходит рытье котлованов, установка и сборка опор для ЛЭП, распределение вдоль сети арматур и механизмов заземления. Монтаж начинается с соединения и раскатки проводов. После провода поднимаются на опоры и натягиваются. В завершении работ провода и тросы на изоляторах увязывают.
Перед запуском ЛЭП выполняется проверка стрелы провеса и габаритов линии, измеряется падение напряжения и сопротивление заземляющих устройств. При работах на воздушных линиях электропередач соблюдаются следующие правила:
- Работы прекращаются при приближении штормового или грозового фронта.
- Персонал должен быть обеспечен защитой от воздействия проводов.
- Работа запрещена в ночное время, при тумане и гололеде.
После запуска сети электропередачи все воздушные линии с напряжением больше 1 кВт проверяются каждые полгода обслуживающим персоналом и 1 раз в год инженерами на предмет неисправностей.
При проверке раз в год сеть электропередач проверяют на наличие посторонних предметов на проводах, обрывов отдельных участков, провесов линий, повреждение изоляторов или разрядников, разрушение опор и нарушение охранной зоны. В случае обнаружения нарушений поврежденный участок восстанавливают с помощью ремонтной муфты или бандажа. Большие повреждения разрезают и соединяют зажимом.
В ходе ремонта ЛЭП выправляют опоры, проверяют затяжку резьбовых соединений, восстанавливают защитный слой на конструкции и делают замер сопротивления на заземляющих устройствах. При капитальном ремонте воздушных линий выполняют все перечисленные работы, а также осуществляют полную перетяжку проводов с замером переходного сопротивления соединительных муфт.

Пожарная безопасность при эксплуатации
Температура внутри кабелей не должна различаться с внешней больше, чем на 10 °C в летнее время. При пожарах в кабельных помещениях происходит развитие горения и его существенное распространение с течением времени. При этом воспламенение кабелей может возникнуть в нескольких местах и на значительной протяженности участка. Этот факт связан с тем, что весь провод находится под нагрузкой, и его изоляция может нагреться до температуры, близкой к самовоспламенению.
Также быстрое воспламенение ЛЭП связано с использованием в конструкциях металлических элементов, которые в случае пожара или перегрузки нагреваются до температуры большей, чем температура воспламенения. Из-за этого выбирают огнетушащие вещества, способные ликвидировать горение и исключить возможность повторного возгорания. Исследования материалов показывают, что распыленная вода обладает большей огнетушащей способностью, чем установки пенного тушения, так как она хорошо охлаждает кабели и строительные конструкции.
Под крышей дома моего. Спрос на натуральную черепицу растет
По мнению экспертов, в настоящее время производство натуральной черепицы удивительным образом сочетает в себе многовековой опыт строителей и передовые новейшие технологии. Сегодня мы видим, как эталонный кровельный материал переживает свое второе рождение и пользуется огромным спросом и популярностью.
В современной строительной практике под натуральной черепицей подразумевают две ее разновидности: керамическую и минеральную. Основой для производства того и другого вида продукции является природное сырье: глина и кварцевый песок. Незначительные внешние отличия готовых изделий связаны с различиями в технологии их производства.
Принцип производства керамической черепицы насчитывает не одно столетие: добыча глиняного сырья, формование отдельных элементов, сушка и обжиг. Производство же минеральной (цементно-песчаной, бетонной) черепицы основано на самых современных технологиях: качественный портландцемент, вода, кварцевый песок с точно подобранным фракционным составом. Как отмечают эксперты, на крыше дома неспециалисту практически невозможно определить, какой вариант натуральной черепицы на кровле — оба будут выглядеть одинаково респектабельно и красиво.
Слагаемые комфорта
По словам руководителя технического отдела BMI BRAAS Россия Андрея Миронова, в настоящее время спрос на натуральную черепицу растет. Минеральная и керамическая черепица БРААС – самая популярная черепица на кровельном рынке России и стран СНГ. В России она производится с 1996 года на современных предприятиях в Москве и Краснодаре. Черепицей БРААС покрыто 25 млн кв. метров крыш при строительстве и реконструкции более 125 тысяч объектов, а также памятников архитектуры во всех регионах России, от Владивостока до Калининграда.

Черепичная кровля, отмечает эксперт, стабилизирует крышу, гасит шум дождя, успешно противостоит ураганному ветру. Благодаря большой тепловой инерции, нагреваясь днем, долго отдает накопленное тепло ночью, создавая под кровлей воздушный поток, который проветривает и просушивает конструкцию крыши. Кроме того, такая черепица – это самый экологичный кровельный материал. В доме под такой крышей создается особая атмосфера уюта и комфорта, необходимая для счастья жильцов. Разнообразие цветов, форм, поверхностей создают гармоничную завершенную архитектуру. Материал не подвержен коррозии и не горюч. И, конечно же, он подчеркивает красоту и самобытность дома, создает комфортный микроклимат и домашний уют внутри.
«Не поспорить и с тем, что натуральная черепица является долгосрочной и выгодной инвестицией в строительство собственного дома, а ее применение существенно повышает рыночную стоимость самого здания. Срок службы черепицы БРААС при минимальных затратах на эксплуатацию превышает 100 лет, с гарантией от производителя - 30 лет. Ни один материал, исключая цветные металлы, не обладает подобной долговечностью. Кровля, сложенная из мелкоразмерных минеральных или керамических черепичных плиток, как чешуя покрывает несущую конструкцию крыши, без напряжения приспосабливается к ее деформациям при усадке здания, температурных перепадах, ветровых и снеговых нагрузках. В случае повреждения, такую крышу легко восстановить, заменив лишь несколько необходимых элементов»,- рассказывает Андрей Миронов.

Вопрос цены
Если керамическая кровля уверенно возглавляет парад элитных натуральных материалов, то минеральная черепица заняла прочные позиции в более бюджетных проектах. Поэтому, выбрав керамику, домовладелец приобретает крышу на 100 лет и более. Остановившись на минеральной черепице, он получает внешний вид и свойства керамики и длительный срок службы за приемлемые деньги. В частности, стоимость минеральной черепицы БРААС начинается от 500 руб./м2.
Также необходимо помнить, подчеркивает Андрей Миронов, что окончательная стоимость готовой крыши будет складываться не просто из «цены за квадратный метр» самого материала, но и всех ее составляющих (пиломатериалы, утепление, монтажные работы, транспорт и т.д.). Кроме того, нужно обратить внимание на срок службы - чем дольше служит крыша, не нуждаясь в ремонте, тем пропорционально ниже конечная цена готовой кровли на год эксплуатации. Анализ показал, что стоимость кровли из натуральной черепицы вполне сопоставима со стоимостью кровли из металлочерепицы и мягкой кровли.
Рецепт современной архитектуры
Совершенные кровельные системы на основе натуральной черепицы позволяют возводить двухскатные, вальмовые, щипцовые, шатровые, мансардные и любые другие крыши с возможными уклонами от 10º до 90º. Каждому конкретному случаю, в зависимости от уклона кровли, соответствует то или иное конструктивное решение.

Декоративные свойства черепицы открывают практически безграничные возможности для творческих воплощений архитектора и самых изысканных пожеланий владельца дома. Например, отмечает Андрей Миронов, классические модели - «Франкфурт» и «Янтарь» - удачно применяются во многих архитектурных стилях, отличаясь в то же время лаконичной красотой и практичностью. Современный тренд - плоская черепица, и модели «ЭВО», «Тевива», «Турмалин» создают необычный дизайн крыш с четкими линиями и геометрией. Они безупречно подходят для домов в стиле хай-тек, а также для популярного эклектичного стиля, который сочетает в себе различные архитектурные направления. Выразительный профиль черепицы «Таунус» с широкой волной безукоризненно подчеркивает форму и красоту крыши дома. Впечатляющий эффект создает модель «Адриа», с высокой волной и гранулированной поверхностью, она передает атмосферу жизни в красивом средиземноморском городке с теплым ярким солнцем и ласковым морем. Потрясающая модель «Изумруд», ромбовидной формы, не имеющая аналогов на кровельном рынке, для тех, кто предпочитает эксклюзивность и необычный дизайн.

«Мировой шедевр и самая популярная модель керамической черепицы в Европе «Рубин» -лауреат престижных международных наград и премий за выдающийся дизайн и инновационные решения. В данной модели самая широкая цветовая гамма, разнообразие поверхностей и уникальные инженерные решения: черепица с переменным шагом, что обозначается буквой V- variable. Благодаря особой конструкции замка, можно скорректировать до 30 мм в стыке каждой пары черепиц и избежать необходимости подрезать материал, чтобы уместить его на скате. Кроме рядовой черепицы, призванной укрывать основную площадь ската, в ассортименте БРААС имеются элементы различных форм, требуемые для качественного и аккуратного оформления любого узла кровли. В целом, все наши модели черепицы отражают современный тренд, направленный на использование только безопасных, природных и экологически чистых материалов и технологий в строительстве», - добавляет Андрей Миронов.
ПЕНОПЛЭКС®: оптимальный утеплитель при повышенной влажности
Теплоизоляция ПЕНОПЛЭКС® успешно применяется для защиты от потерь тепловой энергии в нижней части зданий и сооружений, где экструзионный пенополистирол является, по сути, безальтернативным материалом среди всех широко распространенных утеплителей.
Цоколь многоквартирного дома в Челябинске на ул. Ижевской, 56 защищен от потерь тепла с помощью теплоизоляции ПЕНОПЛЭКС®. Из всех ходовых теплоизоляционных материалов только экструзионный пенополистирол, из которого изготовлены плиты ПЕНОПЛЭКС®, способен предоставить надежную теплозащиту строительным конструкциям в нижней части зданий и сооружений. Это объясняется высокой влагостойкостью материала — водопоглощение теплоизоляции ПЕНОПЛЭКС® не превышает 0,5% по объему. Данная характеристика не присуща ни минеральной вате, ни беспрессовому пенополистиролу (ПСБ). Эти материалы имеют, соответственно, волокнистую и зернистую структуру, и вода легко проникает в пространство между волокнами минваты и зернами ПСБ. Закрытая мелкоячеистая структура ПЕНОПЛЭКС® этого не позволяет.
Минвата и ПСБ (который в разговорной речи еще называют пенопластом) не могут надежно защитить цоколь здания, поскольку эта конструкция подвергается рискам повышенного увлажнения. Перечислим основные факторы риска:
— капиллярное всасывание воды из грунта;
— впитывание влаги от снежного покрова зимой;
— длительное погружение конструкции в воду вследствие возможных подтоплений.
На качественном уровне обязательное применение материала с нулевым водопоглощением для теплозащиты цоколя очевидно. На количественном уровне это было доказано компанией «ПЕНОПЛЭКС» путем расчета приращения теплопроводности (т.е. ухудшения теплозащитных свойств) для различных утеплителей в условиях влажности. Расчеты были выполнены для трех видов самых распространенных утеплителей: минеральной ваты, пенопласта и экструзионного пенополистирола в пяти регионах страны (Москва, Санкт-Петербург, Краснодар, Екатеринбург, Новосибирск, Владивосток). Наиболее сильное увеличение теплопроводности получилось у ПСБ в Новосибирске — на 13,48%. У минеральной ваты наибольший показатель максимального приращения теплопроводности составил 4,4% в этом же регионе.
Подробнее результаты данной исследовательской работы представлены в СТО 54349294-001-2015 «Стандарт организации по применению ПЕНОПЛЭКС® в ограждающих конструкциях первых и цокольных этажей». Документ разработан силами компании совместно с НИИ Строительной физики РААСН, его может скачать с нашего сайта любой желающий.
Следует отметить, что теплозащитные свойства экструзионного пенополистирола лучше, чем у упомянутых утеплителей и в обычных условиях без повышенной влажности. ПЕНОПЛЭКС® имеет более низкий коэффициент теплопроводности — максимум 0,034 Вт/м∙°С. В числе его преимуществ перед другими теплоизоляционными материалами также можно отметить более высокую прочность на сжатие, экологическую безопасность, биостойкость, долговечность, удобство и всепогодность монтажа.
