Линии электропередач: виды линий и конструкций


09.01.2023 09:58

ЛЭП расшифровываются, как линии электропередачи. Эти конструкции являются важным элементом в энергетической системе любой инфраструктуры. ЛЭП способны передавать электроэнергию по прочным проводам из металла. Линейные входы и выходы считаются точками начала и конца линий электропередач, а для ветвления используется специальная опора и линейный вход.


По ЛЭП также обмениваются информацией с помощью высокочастотных сигналов. Применяются они для передачи телеметрических данных, сигналов релейной защиты и противоаварийной автоматики, а также для диспетчерского управления.

Какие бывают ЛЭП?

Проводником для передачи электроэнергии выступает медь или алюминий. Все ЛЭП можно разделить на 3 большие группы, которые зависят от способа прокладки проводов. Выделяют воздушный способ с прокладкой по воздуху, кабельный с прокладкой в грунте или воде и газоизолированный способ с изоляцией проводов газом. Все перечисленные способы являются основными при монтаже, однако сегодня существуют разовые попытки передавать электроэнергию без проводов. Такой способ обеспечения энергией применяют только для маломощных устройств. Несмотря на применение беспроводного варианта передачи электроэнергии, кабельные и воздушные ЛЭП остаются самым распространенным способом для поставки потребителю энергии.

В последнее время для городских инфраструктур чаще устанавливают газоизолированные сети для передачи больших мощностей. Такой подход позволяет экономить площадь для ЛЭП и соответствовать уровню экологии на участке. Кабельные линии обустраивают в местах, где затруднителен монтаж воздушных. Однако воздушные линии остаются более востребованными из-за меньшей цены для производства и лучшей ремонтопригодности. Узнать больше об используемых линия электропередач можно в новостном блоке.

Кабельные линии электропередач и их виды

Как было описано, кабельные ЛЭП монтируют при плотной застройке. Они представляют собой несколько линий, установленных рядом друг с другом в параллельном направлении. Между участками кабеля устанавливаются муфты.

Классификация кабельных ЛЭП происходит по таким же принципам, как и у воздушных сетей, а отличительные особенности сводятся к минимуму. Так, по способу прокладки кабельные разделяют на подземные, подводные и по сооружениям. В число ЛЭП по сооружениям входят:

  • кабельные туннели в виде закрытых просторных коридоров;
  • кабельные каналы, в которых человек уже не может передвигаться;
  • кабельные шахты, представляющие из себя вертикальный коридор;
  • камера, которая представляет собой закрытое подземное сооружение;
  • эстакада в виде горизонтального открытого сооружения;
  • галерея, которая похоже на эстакаду, но является закрытым типом.

Также кабельные ЛЭП классифицируют по типу изоляции, выделяют твердую и жидкостную изоляцию. К твердому относят изоляционные оплетки из полимеров, а к жидкостному — нефтяное масло. Реже для изоляции используют специальные газы или другие твердые материалы.

Кабельные линии электропередач
Источник: http://www.spbes.ru

Воздушные линии электропередач

Воздушные линии электропередач — это комплексная конструкция, которая используется для перемещения энергии по кабелям, расположенным на открытом воздухе. Кабели удерживаются на опорах и защищены охранной зоной.

Воздушную сеть могут установить почти на любой местности с разными атмосферными условиями, будь то резкие перепады температур или большое количество осадков. Однако при монтаже акцентируют внимание на погодных явлениях, учитывают особенности участка для прокладки и прочие параметры. Установка воздушных линий должна соответствовать следующим нормам:

  • высокая проводимость электричества;
  • выгодная стоимость;
  • устойчивость к повреждениям и коррозии;
  • безопасность для человека и окружающей среды.

Главная сложность конструкции заключается в обеспечении безопасности при монтаже и эксплуатации, так как линии электропередач находятся на обширном и свободном пространстве.

Воздушные линии электропередач
Источник: https://uk-parkovaya.ru

Из чего состоят установки ВЛЭП: опоры и другие элементы

Любая воздушная линия электропередач состоит из проводов, опор, изоляторов, арматуры, грозозащитных тросов, разрядников и заземления. К основным элементам опор для сети электропередач относят:

  • фундамент;
  • стойки;
  • подкосы;
  • растяжки.

Наличие других составных элементов, в виде заземляющих устройств, зависит от вида ВЛЭП и других параметров. Также для основного списка используется вспомогательное оборудование и дополнительные способы связи.

Для удержания конструкции ВЛЭП используют опоры. Самым бюджетным вариантом являются обычные деревянные столбы, однако их применяют только для линий с напряжением до 35 кВт. Для конструкций с напряжением выше применяют опоры из железобетона, а сами провода поднимают выше, расстояние между фазами увеличивается. На опорах размещают системы защиты от молний и реакторы. Система защиты представляет из себя трос и штыревые молниеотводы.

Выделяют промежуточные и анкерные конструкции ВЛЭП. Последние монтируют только в начале и конце линии. На пересечениях линий электропередач с водными артериями и другими подобными объектами применяют переходные анкерные опоры. Это самые высокие и масштабные конструкции, которые достигают в высоту 300 метров.

Промежуточные опоры занимают меньше места и применяются для прямых участков трасс. По назначению выделяют транспозиционные, перекрестные, ответвительные, повышенные и пониженные опоры. Несмотря на разделение, при монтаже каждую сеть адаптируют к условиям рельефа участка и его климату.

Для установки ВЛЭП используют арматуры, которые необходимы для соединения проводов и крепежа их на опорах. Иногда для конструкции используют разрядники, предотвращающие поломку во время штормового ветра или других погодных условий.

Опоры линии электропередач
Источник: https://elektro-montagnik.ru

Провода для воздушных линий

Провода для воздушных линий электропередач должны обладать высоко механической прочностью. Их разделяют на 2 класса: изолированные и неизолированные. Провода создают в виде однопроволочных, которые состоят из одной жилы и применяются только для сетей с низким напряжением, и многопроволочных проводников.

Многопроволочные применяются для воздушных ЛЭП и могут быть выполнены из сплавов, стали или меди. Чаще в основе проводов используют алюминий или сплавы на его основе. Многопроволочные провода представляют собой скрученные стальные жилы, поверх которых располагается выбранный материал, будь то сплав, алюминий или медь. Чтобы провода не поддавались коррозии, их покрывают цинком. О других материалах и технологиях в строительстве можно прочитать на соответствующей вкладке.

Выбор сечения проводов происходит на основе мощности при падении напряжения и исходя из механических характеристик. Ответвления выполняются изолированными проводами. Полученное изделие состоит из стального троса и изоляционного покрытия, которое защищает от атмосферных явлений. Соединения готовых проводов монтируют на участках, которые не подвержены механическим воздействиям. Монтаж происходит с помощью их обжатия или сваривания.

Технические характеристики воздушных линий электропередач

При проектировании и установке воздушных линий учитываются следующие характеристики:

  • длина проводов между соседними стойками;
  • расстояние удаления фазных проводников друг от друга и от земли;
  • длина изоляторов, которая будет соответствовать номинальному напряжению;
  • полная высота опор.

С повышением номинальной мощности все параметры увеличиваются. Чтобы воздушные линии работали стабильно во время грозы или других погодных явлений, над фазными проводами проводят стальной или алюминиевый молниеотвод в виде троса, который заземлен на опорах. Также защиту от перенапряжения обеспечивают вентильные разрядники, помогающие сети перераспределять грозовой импульс на опору, не повреждая изоляции. Опоры, в свою очередь, уменьшают сопротивление за счет заземляющего устройства.

Классификация линий передач

Помимо перечисленных 3 основных групп, ЛЭП разделяют по виду расположения кабелей и функциям конструкции. По расположению кабелей выделяют воздушные, находящиеся над поверхностью, и закрытые, которые располагаются в кабель-каналах. Также линии электропередач можно разделить по способу передачи тока и монтажа, роду тока, режиму работы, охвату территории и назначению.

Линии передач переменного и постоянного тока

Линии электропередач переменного тока используют для передачи энергии с минимумом потерь. Подобные линии применяют для передачи энергии на дальние расстояния. Их часто используют в Европе, реже — в России. Также вид ЛЭП используют для оборудования железных дорог.

На линиях электропередач с постоянным током энергия всегда распределяется вне зависимости от направления и сопротивления. Вид ЛЭП в большей части используется в России. Установки с постоянным током легче монтировать и эксплуатировать, однако конструкция способствует потере тока при перемещении.

Виды ЛЭП по режиму работы и охвату территории

По режиму работы выделяют линии электропередач с глухозаземленной и изолированной нейтралью, а также с резонансно-заземленной и эффективно-заземленной нейтралью.

По охвату территории сети разделяют на:

  • сверхдальние, которые предназначены для региональных систем и напряжением свыше 500 кВт;
  • магистральные для соединения электростанций с распределительными сооружениями и напряжением в 220 или 330 кВт;
  • распределительные, которые устанавливают для поставки энергии крупным потребителям с напряжением в 35-150 кВт;
  • подводящие или питающие, обеспечивающие энергоснабжение городских, промышленных и сельскохозяйственных потребителей и напряжением ниже 20 кВт.

Воздушные линии электропередач бывают радиальными, замкнутыми и с резервным источником питания. По количеству параллельных цепей ЛЭП разделяют на одно-, двух- и многоцепные сети. Если цепи имеют разные значения напряжения, то такую воздушную сеть называют комбинированной.

Охранная зона ЛЭП

Для правильной эксплуатации линий электропередач, ремонта, функционирования и обеспечения сохранности сети вводятся хоны с специальным режимом использования. Поэтому воздушные линии электропередач — это не только участок земли, но и воздушное пространство над сетью.

Специалисты строительных работ запрещают работать в охранных зонах грузоподъемной технике, а также возводить здания и сооружения. Минимальное расстояние от сети электропередач определяется напряжением. Так, для номинального напряжения в 35 кВт размер охранной зоны составляет 15 м, а для величины в 350 кВт расстояние уже будет равно 30 м.

Документами по эксплуатации определяется наименьшее удаление сети от поверхности земли, а также от жилых или производственных построек. Монтаж высоковольтных трасс запрещен над крышами зданий, стадионов, общественных мест и детских учреждений.

Охранная зона ЛЭП
Источник: https://tokdoma.ru

Обслуживание и монтаж

Процесс возведения сооружения воздушных линий электропередач состоит из подготовительной, строительно-монтажной и пусковой работы. Подготовительная работа сводится к закупу оборудования и материалов, конструкций, подготовке трассы, изучению цельного проекта и разработке плана производства монтажных работ.

На этапе монтажных работ происходит рытье котлованов, установка и сборка опор для ЛЭП, распределение вдоль сети арматур и механизмов заземления. Монтаж начинается с соединения и раскатки проводов. После провода поднимаются на опоры и натягиваются. В завершении работ провода и тросы на изоляторах увязывают.

Перед запуском ЛЭП выполняется проверка стрелы провеса и габаритов линии, измеряется падение напряжения и сопротивление заземляющих устройств. При работах на воздушных линиях электропередач соблюдаются следующие правила:

  1. Работы прекращаются при приближении штормового или грозового фронта.
  2. Персонал должен быть обеспечен защитой от воздействия проводов.
  3. Работа запрещена в ночное время, при тумане и гололеде.

После запуска сети электропередачи все воздушные линии с напряжением больше 1 кВт проверяются каждые полгода обслуживающим персоналом и 1 раз в год инженерами на предмет неисправностей.

При проверке раз в год сеть электропередач проверяют на наличие посторонних предметов на проводах, обрывов отдельных участков, провесов линий, повреждение изоляторов или разрядников, разрушение опор и нарушение охранной зоны. В случае обнаружения нарушений поврежденный участок восстанавливают с помощью ремонтной муфты или бандажа. Большие повреждения разрезают и соединяют зажимом.

В ходе ремонта ЛЭП выправляют опоры, проверяют затяжку резьбовых соединений, восстанавливают защитный слой на конструкции и делают замер сопротивления на заземляющих устройствах. При капитальном ремонте воздушных линий выполняют все перечисленные работы, а также осуществляют полную перетяжку проводов с замером переходного сопротивления соединительных муфт.

Обслуживание и эксплуатация ЛЭП
Источник: https://vuzopedia.ru

Пожарная безопасность при эксплуатации

Температура внутри кабелей не должна различаться с внешней больше, чем на 10 °C в летнее время. При пожарах в кабельных помещениях происходит развитие горения и его существенное распространение с течением времени. При этом воспламенение кабелей может возникнуть в нескольких местах и на значительной протяженности участка. Этот факт связан с тем, что весь провод находится под нагрузкой, и его изоляция может нагреться до температуры, близкой к самовоспламенению.

Также быстрое воспламенение ЛЭП связано с использованием в конструкциях металлических элементов, которые в случае пожара или перегрузки нагреваются до температуры большей, чем температура воспламенения. Из-за этого выбирают огнетушащие вещества, способные ликвидировать горение и исключить возможность повторного возгорания. Исследования материалов показывают, что распыленная вода обладает большей огнетушащей способностью, чем установки пенного тушения, так как она хорошо охлаждает кабели и строительные конструкции.


ИСТОЧНИК ФОТО: https://energy-polis.ru


Задачи управления промышленными объектами через создание цифрового двойника предприятия


22.04.2021 14:24

Модернизация производства — это комплексное, частичное или полное обновление систем или оснащения на предприятии. Данный процесс влечет за собой целый ряд мероприятий, среди которых большую часть занимает тщательный анализ и сбор информации.


В данной статье предлагается затронуть тему цифровых двойников[1] предприятий и их реализацию в виде набора цифровых информационных моделей.

В последние годы эта тема становится все более востребованной и острой. Среди причин такого повышенного интереса можно отметить:

  • объявление национальной программы «Цифровая экономика Российской Федерации»;
  • выполнение задач цифровизации строительной отрасли (раздел «Цифровизация строительной отрасли» в проекте «Стратегии развития строительной отрасли до 2030 года»[2]);
  • рост применения технологий информационного моделирования;
  • появление на рынке труда молодых специалистов, владеющих инструментом.

Все чаще владельцы предприятий и представители государственных структур обращают внимание на новые технологии применительно к своим задачам, в том числе и при решении вопросов модернизации. Ни для кого не секрет, что основная масса предприятий построена в прошлом веке и не соответствует современным требованиям. И, следовательно, чтобы вывести оных в список лидеров мирового технологического процесса и наилучших доступных технологий, необходима их модернизация. Это задача стратегического уровня. Политическая и экономическая обстановка, связанная с санкциями, пандемией и рядом других причин, только обострила эту необходимость.

Что же может позволить решить задачу цифровизации строительной отрасли в промышленном кластере? И почему именно о нем стоит говорить?

В России, на первый взгляд, есть все  предпосылки для резкого роста и развития новых  подходов к управлению через создание цифровых двойников: на правительственном уровне приняты или принимаются необходимые решения, говорящие об особом статусе задач цифровизации в строительной отрасли; в проектных организациях строительной отрасли полным ходом идет освоение технологий информационного моделирования; высшие учебные заведения меняют свои программы с учетом государственного заказа и общемировыми тенденциями; инвесторы и заказчики наконец-то научились не только выговаривать, но и понимать основной смысл и назначение технологий информационного моделирования (BIM-технологий). И надо отметить, что Россия быстро наверстывает разрыв в этом направлении.

Основные усилия по внедрению технологий информационного моделирования сейчас направлены на рынок жилищного строительства и госзаказ объектов социальной направленности. Однако даже рынок жилищного строительства не выдает ожидаемых результатов, если говорить о полном жизненном цикле объектов капитального строительства. И связано это в первую очередь с разрывом интересов игроков — инвестор (заказчик), как правило, не участвует в дальнейшей эксплуатации произведенной продукции, будь то жилые дома, школы, поликлиники или административные здания. И, как следствие, управляющие компании или комитеты городских структур, которым в дальнейшем предстоит эксплуатация этих объектов, имеют или мизерное представление о BIM и собственной вовлеченности в процесс цифровизации, или не имеют его вовсе.

И все-таки нельзя утверждать, что цифровые двойники в жилищном комплексе на территории России отсутствуют. Такие примеры есть, и связаны они только с крупными частными застройщиками, осваивающими территорию Москвы. Например, PSN Group (ТОП-5 девелопер Москвы по результатам 2016 года) была внедрена Единая система мониторинга, управления и аналитики для сети жилых комплексов (используются модели зданий), которая находится в промышленной эксплуатации, но по-прежнему постоянно развивается: происходит подключение новых жилых комплексов, разрабатываются новые модули, связанные с предикативным анализом работы оборудования, формируются планы развития[3]. Это скорее исключительный случай.

Другое дело — промышленные объекты. Любое предприятие проходит полный жизненный цикл от появления идеи до демонтажа, сохраняя интерес своего заказчика — управленца. И вот тут-то можно и должно в полной мере почувствовать преимущества применения технологий информационного моделирования в качестве создания цифрового двойника промышленного объекта.

Современный мир предлагает для решения таких задач множество технологий, концепций и инструментов: PLM/PDM, BigData (Большие данные), IIoT[4] (Промышленный интернет вещей), Cloud Computing (Облачные вычисления), GIS (Геоинформационные системы), BIM/openBIM и другие. Все это может быть востребовано при решении множества задач управления объектами предприятия, одной из которых является модернизация. Например, создание цифрового двойника путем формирования цифровых информационных моделей производственных цехов поможет собрать данные о состоянии оборудования, об основных и оборотных средствах, а также о производственных процессах и проанализировать их с помощью специализированных систем.

Модернизация предприятия без снижения объемов производства и, тем более, без его остановки — это задача, которая под силу современным технологиям. Кто-то может возразить, что такие задачи решались и прежде. Решались, но сейчас главный фактор — это время.

Несколько лет назад шли постоянные обсуждения отсутствия стандартов по технологиям информационного моделирования, а сейчас уже речь идет о более глубокой их проработке и применимости к особенностям российского рынка.

Если еще десять лет назад разворачивались целые баталии на тему отсутствия интеграции при применении программного обеспечения разных вендоров, то сейчас и этот вопрос начинает уходить в прошлое. Разработчики программного обеспечения становятся более открытыми друг другу, понимая, что не могут покрыть весь спектр решаемых в строительной отрасли задач. В качестве стандарта обмена и управления данными об объектах строительства в Российской Федерации принят формат IFC (Industry Foundation Classes — формат данных с открытой спецификацией)[5].

Так что же препятствует появлению цифрового двойника предприятия и его участия в вопросах модернизации и, возможно, в дальнейшем в задачах управления активами?

Ответ простой — желание заказчика, его умение идти к поставленной цели и добиваться ее, так как этот процесс невозможно решить в укороченные сроки.

В 2019 году Роснефть запустила в опытно-промышленную эксплуатацию цифровой двойник своего месторождения в Башкирии — проект «Цифровое месторождение»[6], выстраивая тем самым интегральную цепочку нового типа, включающую в себя «цифровое месторождение», «цифровой завод» и «цифровую АЗС». Разработка и запуск проекта «Цифровое месторождение» осуществляется в рамках стратегии «Роснефть-2022», предусматривающей переход на качественно новый уровень управления бизнес-процессами, повышение надежности и экономичности производства, сокращение потерь. Хоть в приведенном примере есть упоминание о «цифровом заводе», но все же выполненная работа относится к управлению производственными процессами, а не промышленными объектами недвижимости.

А вот другой пример. Как сообщается на сайте компании «Газпром нефть»[7] от 27 октября 2020 года, «Газпром нефть» получила патент на собственную цифровую разработку — Систему управления инженерными данными (СУПРИД). Система формирует электронные модели производственных установок — цифровые двойники, включающие в себя инженерно-техническую документацию и 3D-модель объектов. Сейчас СУПРИД охватывает Московский и Омский НПЗ «Газпром нефти», позволяя на 20% сократить временные затраты на выполнение регламентных мероприятий по эксплуатации, ремонту и обслуживанию. Экономический эффект от внедрения системы на нефтеперерабатывающих заводах компании оценивается более чем в 700 млн рублей в год.

Итак, видно, что процесс создания цифровых двойников предприятий уже начал свое движение по территории России, и хочется верить в появление новой технологии, которая с каждым годом будет все более востребованной и совершенной. Однако, прикоснувшись к цифровым двойникам в жизни, понимаем, что пока это или попытка перевести привычный процесс проектирования на новый уровень, или подтягивание моделей зданий без информационной части к своим системам автоматизации, или же моделирование без учета всех последующих задач использования цифровых информационных моделей: эксплуатация, модернизация, управление активами и так далее.

В массе случаев появляющихся на свет цифровых двойников видно, что отсутствует главное — требования заказчика, которые зафиксированы в виде документов и будут неукоснительно выполняться исполнителями; что зачастую исполнители живут интересами, очерченными рамками своих договоров и получением вознаграждения за свой труд, без желания понять, что за  каждым этапом жизненного цикла объекта до момента его ликвидации идет следующий этап со своими задачами, использующими результаты предыдущего этапа, и что несогласованный переход от одного этапа к другому может привести к большим финансовым издержкам. А ведь технологии информационного моделирования предназначены для наименее рискового прохождения объекта капитального строительства по всему жизненному циклу. Но для этого надо просто правильно организовать работу. Это значит, что впереди предстоит много интересной работы.

Ирина Чиковская

Компания ООО «Бюро ЕСГ» — это системный интегратор, который принимает активное участие в проработке правильного подхода к созданию цифровых двойников промышленных объектов. Нашими клиентами являются крупные промышленные компании в нефтегазовой, сталелитейной, судостроительной и других отраслях. «Бюро ЕСГ» имеет многолетний опыт по внедрению технологий информационного моделирования, применению технологий лазерного сканирования, созданию систем управления инженерными/проектными данными, использованию геоинформационных систем и их интеграции с цифровыми информационными моделями. Наша компания предоставляет полный комплекс услуг по разработке технологии создания цифрового двойника предприятия с учетом его последующего использования.

За последние годы специалистами ООО «Бюро ЕСГ»[8] выполнены и продолжают выполняться работы по созданию цифровых двойников как на основе лазерного сканирования, так и с использованием проектной, рабочей и исполнительной документации. ООО «Бюро ЕСГ» принимает активное участие при разработке требований заказчиков к цифровым информационным моделям в различных отраслях промышленности[9], в том числе для ПАО «Газпром нефть», а также в разработке методик создания цифровых информационных моделей с применением программного обеспечения разных разработчиков.

ООО «Бюро ЕСГ» принимает участие в пилотных проектах по разработке импортозамещающих систем управления инженерными данными и их интеграции с цифровым двойником предприятия. Группой специалистов ООО «Бюро ЕСГ» по геоинформационным системам реализован ряд проектов по созданию электронного генплана, а также интеграции BIM и 3D-ГИС.

[1] Цифровой двойник (англ. Digital Twin) — цифровая копия физического объекта или процесса, помогающая оптимизировать эффективность бизнеса. Концепция «цифрового двойника» является частью четвертой промышленной революции и призвана помочь предприятиям быстрее обнаруживать физические проблемы, точнее предсказывать их результаты и производить более качественные продукты. Википедия.

[2] https://nopriz.ru/upload/iblock/892/TSifrovizatsiya-stroitelnoy-otrasli-dlya-Strategii.pdf

[3] Информация получена с интернет-ресурса https://hmps-business.ru/portfolio/sistema-monitoringa-upravleniya-i-analitiki-dlya-psn-group.html

[4] Промы́шленный интерне́т веще́й (англ. Industrial Internet of Things, IIoT) — это система объединенных компьютерных сетей и подключенных к ним промышленных (производственных) объектов со встроенными датчиками и программным обеспечением для сбора и обмена данными с возможностью удаленного контроля и управления в автоматизированном режиме, без участия человека. Применение Интернета вещей в промышленности создает новые возможности для развития производства и решает ряд важнейших задач: повышение производительности оборудования, снижение материальных и энергетических затрат, повышение качества, оптимизация и улучшение условий труда сотрудников компании, рост рентабельности производства и конкурентоспособности на мировом рынке. Википедия.

[5] ГОСТ Р 10.0.02-2019/ИСО 16739-1:2018 Система стандартов информационного моделирования зданий и сооружений. Отраслевые базовые классы (IFC) для обмена и управления данными об объектах строительства.

[6] Более полную информацию можно получить на сайте Роснефть (https://www.rosneft.ru/press/news/item/195043/).

[7] «Газпром нефть» защитила патентом собственную систему управления инженерными данными

https://www.gazprom-neft.ru/press-center/news/gazprom_neft_zashchitila_patentom_sobstvennuyu_sistemu_upravleniya_inzhenernymi_dannymi/

[8] Более подробно об опыте компании ООО «Бюро ЕСГ» и предоставляемых услугах можно узнать на сайте http://esg.spb.ru

[9] Автор статьи в период работы в СПб ГАУ ЦГЭ (Центр государственной экспертизы Санкт-Петербурга) сформулировала требования к цифровым информационным моделям, представляемым для проведения  экспертизы в Санкт-Петербурге (https://www.spbexp.ru/docs/podgotovka-informatsionnykh-modeley-bim/), которые уже успешно применяются и продолжают развиваться.

 


АВТОР: Ирина Чиковская
ИСТОЧНИК ФОТО: пресс-служба ООО «Бюро ЕСГ»


Горизонтально направленное бурение : выбирая высокую производительность


21.04.2021 12:49

Технология горизонтально направленного бурения (ГНБ) продолжает внедряться в работы по подземной прокладке коммуникаций и становится все более востребованной.


Горизонтально направленное бурение – один из современных методов бестраншейной подземной прокладки коммуникаций. Данная технология достаточно давно и активно применяется в зарубежных странах,  в некоторых даже считается основной. В России ГНБ используется немного реже, тем не менее, отмечают эксперты, такой способ прокладки подземных сетей становится все более востребованным как у заказчиков работ, так и подрядных организаций.

По словам генерального директора СРО А «Подземдорстрой», исполнительного директора Тоннельной ассоциации Северо-Запада Сергея Алпатова, в течение последних 15 лет в стране объемы применения бестраншейных технологий в целом и техники и технологий ГНБ в частности растут. В последние годы отраслевой расклад в процентном отношении по объемам применения технологии ГНБ выглядит следующим образом: строительство и ЖКХ – 34% , электроэнергетика – 30%, транспорт нефти и газа - 18%, инженерные коммуникации - 23%, нестандартные применения - 5%.

«Техника и технология ГНБ эффективна и оправдана всегда, когда производство работ по строительству и реконструкции трубопроводов различного назначения по традиционным технологиям с внешними экскавациями грунта затруднено или попросту невозможно. Это федеральные автомобильные трассы, железные дороги, взлетно-посадочные и рулежные полосы аэродромов, улицы современных городов – не только мегаполисов с многомиллионным населением, но и небольших населенных пунктов. Применение технологии ГНБ эффективно при строительстве трубопроводов с пересечением водных преград – при выполнении работ открытым способом рыба в таких реках и водоемах не водится еще как минимум лет десять из-за нарушения экологического баланса. К примеру, в Санкт-Петербурге более 60% сетей водоснабжения и водоотведения было отремонтировано с применением техники и технологии ГНБ и подобная ситуация наблюдается во всех крупных российских городах. Что касается эффективности эксплуатации техники и технологии ГНБ, не существует ситуаций, когда их применение при наличии определенных ограничений на открытый метод работы, ведет к удорожанию проекта. Если учитывать стоимость строительства альтернативных объектов, затраты на восстановление зеленых насаждений и асфальтового покрытия, неудобства, связанные с нарушением транспортного режима, технология ГНБ всегда окажется намного эффективнее и экономичнее, чем открытый способ строительства», - не сомневается Сергей Алпатов.

Руководитель ООО «Велес Инженерные Сети» Герман Усанов также отмечает высокую технологичность ГНБ, но делает выводы, что пока она достаточно активно задействуется только в крупных городах, где высока конкуренция на рынке строительства подземных коммуникаций. К сожалению, многие организации на периферии считают технологию ГНБ слишком дорогой в сравнении с открытым способом прокладки трубопровода (ручной/механизированный способ разработки грунта).

Герман Усанов напомнил, что ГНБ – это один из нескольких методов бестраншейной прокладки труб. У каждой технологии свое поле применения и свои потребители, все зависит от задач. Непосредственно метод ГНБ выполняется в три этапа, из которых первый – это пилотное бурение, которое является управляемым как по профилю, так и в плановой части. Второй этап – это расширение скважины. Процесс абсолютно неуправляемый, т.е. расширитель (специальный инструмент для формирования скважины) ведет себя хаотично вплоть до того, что может отклониться от заданного пилотного бурения в ту или иную сторону, где меньше сопротивление грунта. «Именно поэтому данный метод не используется для прокладки самотечных канализаций, ведь при третьем этапе – протяжка трубопровода, труба ляжет так, как сформирована скважина, имея естественные некритичные эксплуатационные изгибы. Во всех остальных случаях ГНБ универсальный и эффективный метод, менее затратный в плане подготовительных работ и высокий по производительности», - добавил он.

Стоит отметить, что эффективность технологии ГНБ во многом зависит и от  применяемого бурового оборудования. В настоящее время оно иностранного производства. Руководитель отдела продаж ООО «ДДВ» Андрей Штемпель подчеркивает, что сейчас основные поставщики — это США и Китай. Но кроме страны происхождения, буровые установки отличаются своей оснащенностью, удобством эксплуатации, уровнем предлагаемого сервисного обслуживания и, конечно, ценой. При выборе буровой установки необходимо обращать внимание не только на основные параметры самой машины, но и на качество сервисного обслуживания. «2020 год стал отчасти переломным в поставках установок ГНБ на российский рынок. В частности, объем поставок американских установок значительно снизился. Это связано, прежде всего, с дороговизной в обслуживании данных установок и большой востребованностью и доступностью китайских моделей. При этом увеличился ввоз китайских брендов, но не всех. Основные поставщики потеряли объемы поставок в среднем на 20 %, но бренд DDW увеличил количество завозимых машин на 60 %! В текущем году мы планируем очередной прирост в объеме поставок наших машин DDW на 20% и выход на лидирующие позиции в России. В настоящее время понятно, что направление ГНБ продолжит уверенное развитие в России, большие установки класса Макси будут более универсальными и станут применяться как для ГНБ так и в нефтяной промышленности для добычи тяжелой нефти», - считает он.

По словам Андрея Штемпеля, серьезное внимание при ГНБ следует уделять и подбору бентонита и полимеров. Это вспомогательные материалы, применяемые при бурении.  Прежде всего нужно уточнить их состав, предварительно оценив необходимость данного продукта. На некоторых объектах бентонит и полимеры могут и вовсе не понадобиться. Для грамотного подбора и приготовления бурового раствора нужно начать с изучения грунта на объекте, получить шурфы, провести «лабораторию» с использованием нескольких образцов бентонита и выбрать наиболее оптимальный, при этом не выйдя за рамки бюджета.

Мнение

Герман Усанов, руководитель ООО «Велес Инженерные Сети»

Что касаемо факторов выбора, обслуживания и обновления, то есть один весомый аргумент: любая техника требует ухода и своевременного обслуживания, а чтобы эксплуатация была бережной и предсказуемой, нужно исключить использование техники на предельных нагрузках. Для каждого ГНБ перехода есть свой класс установок. Также надо стараться «не пускать технику по рукам», стараться, чтобы оператор был один – это самое основное. Все остальное аналогично эксплуатации любой спецтехники, правда, если запустить инструмент, нарушить технологию или по иным причинам оставить/похоронить при протяжке колонну в земле – это чревато колоссальными издержками, ведь хороший инструмент порой стоит не дешевле самой установки.


АВТОР: Виктор Краснов
ИСТОЧНИК ФОТО: http://www.gnbist.ru