Строительная реставрация


24.01.2022 08:03

Строительная реставрация — это восстановление внешнего вида, а также отдельных деталей здания различных годов постройки. Благодаря современным материалам и эффективным технологиям профессиональные бригады выполняют работы быстро и полностью возвращают сооружениям первоначальный внешний вид.


Что такое реставрация зданий?

Реставрация — это совокупность мероприятий, которые направлены на восстановление исходного облика и улучшение характеристик старых сооружений, имеющих историческую или культурную ценность. Чаще всего объекты располагаются в центральной части города или в зонах исторических застроек. После того, как поставленные задачи полностью выполнены, строение разрешается полноценно использовать с сохранением архитектурного наследия.

В комплекс услуг по реставрации входят работы:

  • строительно-монтажные;
  • пусконаладочные;
  • по восстановлению нарушенного первоначального вида историко-культурных ценностей: сооружений, зданий.

Строительные организации выполняют полный комплекс услуг или восстанавливают определенную часть здания. Профессионалы выполняют работы по реставрации:

  • фасадов административных и жилых зданий;
  • элементов декора крыши и фасада (например, скульптуры или барельефов);
  • карниза, балюстрады, колонны;
  • обрамлений окна, лепнины;
  • каменной или кирпичной кладки;
  • кровельной несущей конструкции, внешнего покрытия;
  • козырька, водоотвода, фронтона конька;
  • старого сооружения способом частичной разборки, когда стоит цель укрепить несущий элемент;
  • объекта культурного наследия, используя капитальное строительство по восстановлению данных из фотографии, чертежа или словесного описания;
  • инженерной системы с применением аутентичного или современного строительного материала;
  • храма;
  • объекта культурного наследия.

Благодаря реставрации восстанавливают красивый внешний вид сооружения, разрушенного из-за негативного воздействия внешней среды или противоправных действий людей.

Зачем реставрируют здания

К основным причинам восстановления зданий относят:

  1. Ценность. У каждого исторического здания есть своя внутренняя ценность не только в том, как его использовали, но и как строили. Например, до 1940-х годов для возведения домов использовали материалы высокого качества и придерживались стандартов, которые предъявляли больше требований, чем современные.
  2. Архитектурный дизайн. У каждого сооружения существует своя индивидуальность и есть определенные архитектурные элементы, превращающие здания в уникальные и ценные объекты. Поэтому архитекторы стараются сохранять эти черты.
  3. Устойчивое развитие. Это значит, что строение реставрируют для других целей, отличных от первоначального назначения. В финансовом плане организации проще восстановить здание и приспособить его под современные условия, чем строить новый дом. Кроме того, старые строения построены по лучшим стандартам и обладают уникальными архитектурными элементами, которые часто способствуют успешному развитию бизнеса.
  4. Культурное значение. Это самая важная причина, из-за которой начинают заниматься реконструкцией здания. Определенное место связано с национальной идентичностью, делающей строения ценными, так как они приносят культуре больше пользы, чем, если бы их снесли.
  5. Правило одного шанса. Если здание снести, то не получится оценить масштаб потери. Ведь строение может содержать единственную в своем роде деталь дизайна или обладать исторически значимым прошлым, которое на данный момент неизвестно. Правило основано на идее, что второго шанса для восстановления здания не будет. Если упустить эту возможность, то велика вероятность, что будет снесено важное в историческом значении сооружение.

Прежде чем приступить к реставрации здания, изучают местные требования, чтобы правильно сохранить историческое наследие.

Строительная реставрация
Источник: https://rusargument.ru

Необходимые документы для реставрации

Реставрация — это одна из разновидностей строительства (строительной деятельности), которую осуществляют на основании документов:

  • разрешительных;
  • предпроектных (прединвестиционных);
  • проектных (в число которых входит сметная документация).

К разрешительной документации относят:

  • разрешение исполкома на проведение проектно-изыскательской работы и строительства объектов;
  • архитектурно-планировочное задание;
  • разрешение на выполнение проектной работы на материальной историко-культурной ценности;
  • заключение согласующей организации;
  • ТУ (технические условия) на инженерно-технические работы.

Прединвестиционная документация обосновывает вложение денежных средств и задания на проектирование. Определяет:

  • необходимость реставрации;
  • технические возможности;
  • воздействие на окружающую среду;
  • экономическую целесообразность осуществления инвестирования в реставрации объекта строительства;
  • какие требования предъявляют к земельному участку;
  • возможные варианты технологических решений;
  • предполагаемые инженерные нагрузки;
  • источники и объем финансирования;
  • последствия реконструкции объекта строительства.

Предпроектные документы разрабатывают на реставрацию объекта, который относится к 1-4 классу сложности. После их изучения эксперты принимают решение реализовывать инвестиционный проект, подкорректировать замысел или отказаться от поставленной задачи.

Предпроектная документация включает:

  • план по управлению проектом;
  • обоснование инвестиций;
  • задание, по которому планируется выполнять проектирование;
  • бизнес-план (требуется не во всех случаях).

Для инвестиционных обоснований используют достаточный состав и содержание, чтобы можно было правильно принять решение о технических возможностях и экономической целесообразности осуществления проекта.

Чтобы провести реставрацию объекта, необходимо разработать проектную документацию. Поставленную задачу осуществляют в одну или две стадии. В первом случае разрабатывают строительный проект. Во втором варианте:

  • первая стадия — это разработка архитектурного проекта, которую утверждают вышестоящие органы;
  • вторая — строительного проекта.

Проектные документы на реставрацию содержат:

  • сметную документацию;
  • архитектурный проект, который разработан на основе технического задания;
  • охранные зоны;
  • строительный проект;
  • научно-реставрационные отчеты;
  • ПОР (проект организации реставрации).

Если при реставрации применяют типовой проект, то используют одностадийное проектирование.

При составлении сметных документов на проводимые работы используют НРР-2017, который включает нормы по расходу материалов, времени, затрат труда машинистов и рабочего персонала. При этом учитывают информацию исследований и проектной документации, а также:

  • надо ли соблюдать особую осторожность при проведении работ, чтобы обеспечить сохранность первоначальной формы или части объекта реставрации;
  • отдельные малые участки, на которых требуется проведение ограниченного фронта работ;
  • неизбежные периодические перерывы в работе, которые связаны с дополнительным изучением объекта;
  • можно ли применять материалы от разборки определенных элементов сооружения, а также от разборки реставрируемого объекта;
  • особую тщательность выполнения реставрационно-восстановительной работы, которая обеспечивает высокое качество, детальное восстановление утраченной части здания с сохранением подлинного художественного облика сооружения.

Разработанные сметные и проектные документы согласовывают с заинтересованной организацией и рассматривают в органах государственных экспертиз в установленных порядках.

Перед началом реставрации объекта, который относят к 1-4 классу сложности, заказчик назначает руководителя проекта или привлекает инженерную организацию. Во время работ соблюдают требования законодательства о закупке при строительстве, ориентируясь на объем финансирования, предусмотренного предпроектной документацией.

После окончания реставрации подготовленный к использованию объект осматривает приемочная комиссия, соблюдая порядок, установленный законодательством.

Реставрация объекта
Источник: https://newokruga.ru

Способы реставрации здания

Существует несколько способов реставрации:

  1. Фрагментарная. Восстанавливают несколько определенных частей сооружения (например, кровлю, стену или фасад).
  2. Полную (целостную). Здание восстанавливают полностью. При полном его разрушении работы производят по архивной документации. При выборе данного способа разрабатывают техническую документацию и восстанавливают инженерные коммуникации.
  3. Передвижной. Применяют, когда здание представляет архитектурную или историческую ценность, но мешает развиваться новым объектам. В этом случае осуществляют в другой части города строительство идентичного сооружения.

Последний способ очень трудоемкий и сложный, поэтому требует много сил и времени.

Перечисленные методы отличаются друг от друга так же, как и сами объекты, представляющие культурно-историческую ценность. Реставрировать памятник могут, удаляя поздние искажающие его детали или восстанавливая утраченные элементы. В первом случае процесс проводят, когда часть, которую удаляют, не представляет художественного или исторического интереса. При этом убеждаются, что ликвидируемые элементы не содержат скрытых ценных остатков. Поэтому объект исследования — весь памятник, а не определенная его часть, которую заведомо признали ценной.

Реставрацию производить нельзя, если она создает ситуацию, угрожающую устойчивости сооружения, или каким-то образом ухудшает состояние памятника. В обязательном порядке обеспечивают сохранность всех элементов или поверхности стены, учитывая уровень деструкции старого материала (изменение существующей среды, в которой после реставрации окажется подлинник). Например, после разбора деревянного сруба чаще всего большая часть бревен внутри оказывается гнилой. В этом случае восстановление подлинника становится затруднительным.

Чаще всего реставрация — это не одна определенная операция, а сочетание сложных раскрытий и дополнений. Очень редко подлинник оказывается полностью сохранившимся. Обычно у памятников существуют определенные утраты, которые требуют дополнения или восстановления утраченного архитектурного элемента. Полностью меры реставрации для всех случаев нельзя предписать заранее, так как их определяют индивидуально, учитывая сочетание разных факторов.

Полная реставрация здания
Источник: http://proekthrama.ru

Этапы строительной реставрации

Реставрация сооружений состоит из нескольких этапов:

  1. Ставят архитектурно-реставрационную задачу. Составляют и утверждают ТЗ (техническое задание), по которому в последующем будут регламентировать все работы.
  2. Изучают и исследуют несущие конструкции и грунт.
  3. Определяются со способом реставрации, выбирая оптимальные методы.
  4. Утверждают проект, в котором отражают требуемые изменения.
  5. Выполняют поставленные задачи.

Основные работы, проводимые при реставрации:

  • проверяют устойчивость здания;
  • осуществляют демонтаж старой кровли;
  • для создания статической устойчивости строения по периметру здания устанавливают балки;
  • снимают старую штукатурку и очищают стены;
  • устанавливают арматурную решетку, чтобы провести штукатурную работу на стенах и создать статическую устойчивость;
  • монтируют новую кровлю, используя термоизоляцию;
  • устанавливают электроосветительное и электрическое оборудование;
  • штукатурят внутренние и внешние поверхности (каменные стены, которые сохранились в хорошем состоянии, не трогают);
  • устанавливают системы водоснабжения и канализации;
  • облицовывают здание плиткой или иными материалами;
  • устанавливают двери и окна;
  • осуществляют малярные работы.

После завершения работ по реставрации благоустраивают внешнюю территорию.

Реставрация кирпичных зданий
Источник: https://www.nauka-i-religia.ru

Типы работ при реставрации памятника архитектуры

Реставрация памятника архитектуры объединяет разные типы работ:

  1. Ремонт. Это работы, связанные с восстановлением и поддержанием внешнего вида, когда несущую конструкцию оставляют без изменения.
  2. Консервация. Работа направлена на укрепление архитектурных объектов и предотвращение дальнейших разрушений. Во время консервации разрешается устанавливать временную конструкцию (навес, подпорку) или проводить серьезные инженерные реставрации, укрепляя фундамент, несущие стены и восстановление фасада. Для осуществления работы не требуется проводить комплексных архитектурных и инженерных исследований.
  3. Реставрация. Включает в себя ремонт и консервацию, и предполагает видоизменение подлинной конструкции и внешнего вида (в определенных случаях). Во время проведения работы удаляют позднюю достройку, которая искажает исторический облик. Сооружение дополняют утраченными деталями и конструкциями.
  4. Адаптация к современным условиям. Архитектурный памятник внутри обустраивают и оснащают современными инженерными сетями. При этом нововведение не должно нарушать конструкцию и эстетическую ценность объекта. Поэтому на применяемые технологии накладывают определенные ограничения.

При проведении реставрационных работ к минимуму сводят штробление стены и сводов. При внутреннем обустройстве архитектурных памятников тщательно маскируют инженерные коммуникации.

Консервация объекта культурного наследия
Источник: http://www.elabuga.com

Нормативы межремонтного периода многоквартирных домов

Реставрацию фасада многоквартирного дома, после ввода в эксплуатацию, проводят через:

  • 5 лет — косметическую;
  • 10 лет — капитальную.

Для каждого типа реставрации разрабатывают свою технологическую карту. Типовые варианты содержат описание работ для конкретных зданий и определенных видов фасадов. В карту входит:

  • описание технологии реставрации;
  • расчет требуемых материалов и их список.

В жилищном кодексе рекомендуют проводить реставрацию многоквартирного дома в межсезонье, до того как будет включено отопление.

Также учитывают и условия, при которых эксплуатируют дом. Например, в северном регионе, из-за промерзания грунта, реставрацию фундамента осуществляют каждые 10 лет, в Москве и области — через 20-25 лет.

Сроки проведения реставрации законодательством не установлены. Подрядчик должен самостоятельно определять объем и время выполнения работ.


ИСТОЧНИК ФОТО: http://sstroys.ru

Подписывайтесь на нас:

Опыт одновременного строительства подземной и надземной частей здания методом up-doun


14.07.2020 09:54

В условиях плотной городской застройки, а также дефицита свободных участков подземное строительство приобретает особую актуальность, однако местная специфика и гидрогеологические условия делают задачу возведения подземных объектов очень непростой. Это стимулирует инженеров использовать новые методы, которые обеспечивают безопасную эксплуатацию окружающей застройки, позволяют проводить подземные работы практически на любой глубине даже в самых сложных инженерных и геологических условиях. Одним из таких является метод up-down, или «вверх-вниз». Такой способ позволяет на нулевой отметке выполнить перекрытие и продолжить строительство одновременно как вверх, так и вниз. Данная технология является актуальной в современных условиях строительства, так как позволяет возводить здания с меньшим задействованием близлежащих территорий. В статье описан принцип технологии up-down, представлен порядок производства работ, рассмотрены основные преимущества и недостатки данного метода, приведены результаты геотехнического мониторинга окружающей застройки.


Основной областью применения метода up-down является устройство глубоких котлованов в пределах плотной городской застройки. Обычно этот метод используется при невозможности выполнения грунтовых анкеров вследствие стесненных условий и существующей развитой подземной части на соседних участках [1–7]. Кроме того, этот метод используется при малых допустимых деформациях окружающих зданий и сооружений. Явным преимуществом метода up-down является высокий темп строительства при устройстве высотной части (рис. 1).

схема

Рис. 1. Схема производства работ по методу up-down

При многих преимуществах этого метода строительства он в большинстве случаев ведет к удорожанию строительного производства по сравнению со строительством в открытом котловане. Особую сложность представляет собой организация снабжения и логистики при подобном виде работ [8]. Следует отметить, что устройство подземной части по методу «вверх-вниз» требует высокой квалификации подрядчика и детальной проектной проработки [9].

Для производства работ по устройству подземной части при данном методе строительства используется технологии «стена в грунте» и струйная цементация грунта (Jet-grouting). Проектирование конфигурации стены выполняется с учетом особенностей технологического оборудования (гидрофрезы). В ходе подготовительных работ по контуру будущей ограждающей конструкции выполняется форшахта шириной 60…80 см и глубиной до 3,0 м. Стенки форшахты раскрепляются железобетонными монолитными конструкциями.

Разработка грунта в траншее и бетонирование выполняются под защитой глиняного тиксотропного раствора, приготовляемого из бентонитовой глины, что обеспечивает устойчивость стенок траншеи от обрушения. Параметры раствора корректируются при производстве работ на опытном участке.

Укладка бетонной смеси панелей ограждающей конструкции производится методом вертикального подъема трубы. Бетонирование стен под защитой глиняного раствора должно выполняться не позднее чем через 8 часов после образования траншеи в захватке. Бетонирование одной захватки проводится непрерывно на всю высоту. Между захватками выполняется холодный рабочий шов, а армирование захватки — сборными пространственными арматурными каркасами. Глубина ограждающей конструкции по данной технологии может достигать 25…30 м.

По грунтовым условиям «стена в грунте» может применяться в любых дисперсных грунтах.

При устройстве больших котлованов, внутри которых возводится здание или сооружение, ограждающие конструкции, выполненные методом «стена в грунте», используют как внешние стены подземной части. В этом случае нагрузка от здания передается на фундаменты, не связанные с ограждающими стенами.

При необходимости ограждающие конструкции, устраиваемые методом «стена в грунте», могут выполнять двойную функцию: являются и ограждением котлована, и конструктивным элементом.

Современные технологии позволяют устраивать конструкции подземных сооружений разных форм, но традиционные и наиболее часто встречающиеся — конструкции из прямолинейных стенок.

При наличии грунтов, содержащих твердые включения природного или техногенного происхождения (крупные валуны, обломки бетонных конструкций, каменной кладки и др.), при проходке траншеи используется техника, оснащенная фрезерным оборудованием, например, фирм «Бауэр», «Касагранде».

Использование грейферного оборудования, которым крупные включения извлекаются, может привести к деформированию стенки траншеи, падению уровня тиксотропного раствора и деформациям окружающего массива и близ расположенных зданий.

Для надежного уплотнения проблемных стыков между панелями траншейных стен, как показал опыт строительства, успешно может быть применена технология струйной цементации jet-grouting. Она заключается в разрушении и перемешивании грунта мощнонапорной струей цементного раствора, исходящего под высоким давлением из монитора, расположенного на нижнем конце буровой колонны. В результате в грунтовом массиве формируются сваи диаметром 0,6–1,5 м из нового материала — грунтобетона с достаточно высокими несущими и противофильтрационными характеристиками. При этом цементационные работы могут выполняться как снаружи ограждающих котлован стен, так и изнутри котлована до его разработки. С этой целью в зависимости от прогнозируемой величины раскрытия стыков с глубиной могут быть применены неармируемые или армируемые металлическими трубами грунтоцементные колонны диаметром 60 или 80 см.

Для разработки грунтового ядра внутри подземного сооружения, возводимого способом «стена в грунте», рекомендуется применять технологию, которая предусматривает разработку вначале центральной части грунтового массива на глубину одного яруса с сохранением по периферии нетронутых участков. Такой прием облегчает работу ограждающей конструкции. Затем монтируются распорные конструкции, и разрабатывается оставшаяся часть грунта. Одним из существенных преимуществ данных технологий является возможность устройства как отдельных, так и протяженных подземных конструкций с поверхности земли без экскавации котлована [10].

Производство работ по методу up-down считается одним из самых сложных видов строительного производства с геотехнической точки зрения и предусматривает комплексную программу мониторинга в период строительства здания [11].

  1. Характеристика объекта строительства

Рассматриваемая площадка строительства обладает практически всеми перечисленными осложняющими факторами:

Инженерно-геологические и гидрогеологические условия.

В геологическом строении площадки принимают участие следующие элементы (рис. 2): ИГЭ-1. Современные техногенные отложения, песчано-суглинистые грунты со щебнем кирпича. ИГЭ-2. Глина мягкопластичной консистенции. ИГЭ-3. Суглинки мягкопластичной и тугопластичной консистенции. ИГЭ-4. Супеси пластичные. ИГЭ-5. Пески пылеватые, средней плотности, водонасыщенные. ИГЭ-6. Пески мелкие, средней плотности, водонасыщенные. ИГЭ-7. Пески средней крупности, средней плотности, водонасыщенные. ИГЭ-8.1. Глина полутвердая. ИГЭ-8. Мергель малопрочный. ИГЭ-9.1. Известняк, разрушенный до щебня и дресвы. ИГЭ-9. Известняк малопрочный. ИГЭ-10. Глина полутвердая.

Подземная вода встречена на глубине 3,7…4,0 м от поверхности.

В представленных инженерно-геологических условиях, при наличии в основании значительной толщи слабых грунтов и высоком уровне грунтовых вод, основным требованием к ограждающей конструкции котлована является обеспечение минимального поступления воды в котлован и ограничение дополнительных вертикальных перемещений окружающей застройки. Для определения зданий и сооружений, на которые возможно влияние от строительства проектируемого, предварительно назначается 30-метровая зона, которая впоследствии уточняется расчетами. Выполняется обследование зданий, определяется история их строительства, техническое состояние основных конструктивных элементов. Величина допустимого влияния определяется исходя из условия обеспечения надежности здания и зависит от его технического состояния и конструктивной схемы.

 схема площадки

Рис. 2. Инженерно-геологический разрез площадки строительства

Градостроительная и геотехническая ситуация.

Строящееся здание возводится в существующем квартале исторической застройки на месте демонтированного здания. При этом по градостроительным условиям было необходимо сохранить исторический фасад здания, выходящий на улицу. В зону влияния строительства попадают 15 зданий, техническое состояние зданий по результатам обследования оценено как удовлетворительное, предельные дополнительные осадки этих зданий ограничены диапазоном 10…30 мм. Для обеспечения сохранности и механической безопасности зданий при производстве работ по строительству здания и в ходе его эксплуатации необходимо было выполнить комплекс работ по улучшению механических свойств грунтовых оснований (метод компенсационного нагнетания цементного раствора) и усилению конструкции фундаментов. На всех этапах производства работ был организован мониторинг за развитием вертикальных перемещений и техническим состоянием основных конструкций зданий. Схема расположения наблюдательных марок приведена на рис. 3.

Схема размещения наблюдательных марок (вертикальные перемещения)

 Рис. 3. Схема размещения наблюдательных марок (вертикальные перемещения)

Характеристика строящегося здания.

Здание монолитное, железобетонное, с максимальной отметкой верха 34,10 м, прямоугольной формы в плане, состоящее из 6-этажной надземной части и 3-этажной подземной части (гаража). Несущие конструкции — продольные и поперечные монолитные железобетонные стены и колонны. Максимальная глубина котлована 12,60 м. Способ разработки котлована up-down: заглубление под защитой дисков плит перекрытий с возможностью одновременного строительства вверх. Конструкция ограждения котлована: траншейная стена толщиной 640 мм, выполняемая гидрофрезерным оборудованием (базовая машина BAUER BG-28 с гидрофрезой BC-32). Фундамент — свайное поле со сваями-бареттами, опирающимися на однородный скальный грунт (известняки). Вся эксплуатационная нагрузка передается на сваи, железобетонная плита подстилающего слоя толщиной 250 мм не связывается со сваями.

2. Последовательность выполнения работ

Производство работ по устройству подземной части здания выполнялось в следующей последовательности:

Этап 1. Выполнение компенсационного нагнетания цементного раствора в грунтовое основание фундаментов зданий окружающей застройки. Усиление конструкции фундаментов зданий окружающей застройки. Устройство буроинъекционых свай в основании фундаментов сохраняемой части фасада (рис. 4).

Рис. 4. Схема выполнения работ по усилению грунтового основания фундаментов существующих зданий

Рис. 4. Схема выполнения работ по усилению грунтового основания фундаментов существующих зданий

Усиленный таким образом грунтовый массив является новым техногенным образованием, обладающим высокой степенью жесткости. Методика уплотнения позволяет уплотнять не только дисперсные связанные грунты (глины, суглинки, супеси), но и несвязанные дисперсные грунты (пески, насыпные техногенные грунты). Расширение возможностей применения технологии на широком спектре грунтов происходит за счет подбора качественной характеристики раствора, обеспечивающей ее высокую проникающую способность. Наличие грунтовых вод не является противопоказанием к применению высоконапорной инъекции.

Этап 2 (рис. 5). Выполнение форшахт для устройства ограждения по периметру подземной части здания и для выполнения свай-баретт. Производство работ по устройству монолитной железобетонной плиты рабочего уровня с направляющими гильзами для устройства скважин цементации. Бурение скважин и цементация скального грунта. После цементации вдоль периметра ограждения котлована образуется слой скального грунта с достаточными противофильтрационными свойствами для разработки вертикальных траншей

Рис. 5. Этапы устройства форшахт ограждения по периметру и баретт, цементации основания и бетонирования плиты рабочего уровня

Рис. 5. Этапы устройства форшахт ограждения по периметру и баретт, цементации основания и бетонирования плиты рабочего уровня

Рис. 6. Этапы устройства ограждающей конструкции, свай-баретт и экскавации котлована

под защитой бентонитового раствора. Водопроницаемость зацементированных грунтов контролируется по величине удельного водопоглощения, установленного при гидравлическом опробовании контрольных скважин. В основании баретт формируется непрерывный пласт сплошного зацементированного скального массива с нормативным пределом прочности на одноосное сжатие — R_с≥11,0 МПа. Для контроля прочности выполняется отбор образцов и их лабораторные испытания.

Этап 3 (рис. 6). Устройство траншейной стены ограждения подземной части методом «стена в грунте» гидрофрезерным оборудованием (единичная заходка — 2800 х 640 мм) в две очереди по захваткам с заведением в водоупор (ИГЭ-10) не менее чем на один метр. Устройство замыкающих грунтобетонных элементов, выполняемых по технологии струйной цементации грунта (Jet-1), между криволинейными захватками с заведением до отметки кровли скального грунта (ИГЭ-8).

Этап 4. Устройство баретт (2800 х 640 мм) с «сердечниками» под временные и постоянные железобетонные и стальные колонны и баретт под башенный кран по технологии «стена в грунте».

Этап 5. Демонтаж форшахт и железобетонной плиты рабочего уровня. Устройство фундамента башенного крана. Срубка шламового бетона верхней части ограждения котлована на высоту 500 мм. Устройство обвязочной балки и периферийной части плиты перекрытия на отметке (-0.100) по инвентарной опалубке.

Этап 6. Поэтапная экскавация котлована до отметки -4,550 м. Демонтаж временных колонн.

Этап 7. Устройство монолитной железобетонной плиты перекрытия на отметке (-4.550) по бетонной подготовке. Устройство вертикальных несущих конструкций минус первого этажа.

Этап 8. Устройство центральной части плиты перекрытия с технологическими проемами на отметке (-0.100). Эта конструкция позволяет вести работы по устройству надземной части здания, поскольку опирается на ранее выполненные сваи баретты и не требует устройства фундаментной плиты на минус третьем уровне. Начало строительства надземной части здания без ограничения скорости производства работ и этажности.

Этап 9. Разработка грунта котлована малогабаритной техникой до отметки -8.500. Устройство монолитной железобетонной плиты перекрытия минус второго этажа на отметке -8.200.

Этап 10. Разработка грунта котлована малогабаритной техникой до отметки -12,600 м. Срубка и оформление оголовков баретт. Устройство дренажной системы по дну котлована. Устройство монолитной железобетонной плиты пола минус третьего этажа.

Этап 11. Устройство вертикальных несущих конструкций минус третьего этажа.

Этап 12. Завершение работ по устройству монолитной железобетонной плиты минус второго этажа. Устройство пандусов и лестничных маршей. Устройство внутренней вертикальной гидроизоляции и прижимной монолитной железобетонной стенки на минус третьем этаже. Для устройства монолитной прижимной стенки в перекрытиях были предусмотрены технологические гильзы-направляющие.

Этап 13. Устройство вертикальных несущих конструкций минус второго этажа. Устройство внутренней вертикальной гидроизоляции и прижимной монолитной железобетонной стенки на минус втором этаже.

Этап 14. Ликвидация временного технологического проема в железобетонной плите на отметке -0.100. Демонтаж временных колонн.

Этап 15. Демонтаж башенного крана. Демонтаж ростверка и баретт башенного крана. Устройство внутренней вертикальной гидроизоляции и прижимной монолитной железобетонной стенки на минус первом этаже. Устройство наружной вертикальной гидроизоляции стилобатной части здания и благоустройство территории.

3. Геотехнический мониторинг

В ходе геотехнического мониторинга выполнялись высокоточные геодезические измерения отметок установленных деформационных марок, оценивалась динамика развития вертикальных перемещений зданий и проводилась визуальная оценка их технического состояния. Динамика развития наиболее интенсивных вертикальных перемещений показана на рис. 7. Вертикальные перемещения остальных марок имеют меньшие значения. Относительная разница дополнительных осадок фундаментов существующих зданий также не превысила предельно допустимого уровня.

 Рис. 7. Динамика развития вертикальных перемещений деформационных марок

Рис. 7. Динамика развития вертикальных перемещений деформационных марок

О стабилизации осадок зданий окружающей застройки можно судить по изменению скорости их развития, а она имеет явную тенденцию к снижению. Это можно хорошо проследить на графике построенных по данным наблюдений. Если в начальный период наблюдения она составляла 0,1…0,15 мм/сут, то через 90 суток она составила 0,03…0,45 мм/сут, следовательно, снизилась в 2,5 …3,0 раза. Такое снижение скорости развития абсолютной величины вертикальных перемещений свидетельствует о процессе их стабилизации.

Заключение

Выбор метода производства работ up-down по устройству здания в стесненных городских условиях оказался полностью оправданным. Использованные при реализации этого метода технологии позволили выполнить работы в установленные сроки, с качеством обеспечивающим механическую безопасность как строящегося объекта, так и окружающей застройки. Производство работ хотя и является технически сложным, но при надлежащем уровне мониторинга позволяет оптимизировать сроки проведения работ. Полученный в ходе строительства опыт может быть в дальнейшем использован при проектировании и строительстве объектов такого уровня сложности.

Литература

1. Абелев М. Ю. Особенности технологии проведения работ по устройству фундаментов: Учеб. пособие / М. Ю. Абелев, Б. М. Красновский. М.: Б. и., 1980. — 45 с.

2. Абелев М. Ю. Деформации сооружений в сложных инженерно-геологических условиях. М.: ЦМИПКС при МИСИ им. В. В. Куйбышева, 1982. — 290 c.

3. Строительство зданий и сооружений в сложных грунтовых условиях / [М. Ю. Абелев, В. А. Ильичев, С. Б. Ухов и др.]; под ред. М. Ю. Абелева. М.: Стройиздат, 1986. — 104 с.

4. Абелев М. Ю., Чунюк Д. Ю, Бровко Е. И. Выправление кренов высотных промышленных и гражданских зданий // Промышленное и гражданское строительство. 2016. — № 11. — С. 54–59.

5. Катценбах Р., Шмитт А., Рамм Х. Основные принципы проектирования и мониторинга высотных зданий Франкфурта-на-Майне. Случаи из практики // Реконструкция городов и геотехническое строительство. 2005. № 9. C. 80–99.

6. Конюхов Д. С. Строительство городских подземных сооружений мелкого заложения. М.: Архитектура, 2005. — 298 с.

7. Chang-Yu Ou. Deep Excavations. Theory and Practice. London: Taylor & Francis, 2006. — 532 p.

8. Щерба В. Г., Абелев К. М., Храмов Д. В., Сагалаков Г. В., Бахронов Р. Р. Особенности обеспечения объектов строительства монолитных многоэтажных зданий в стесненных городских условиях. //Вестник МГСУ. — 2008. — № 3. С. 146–149.

9. Юркевич П. Б. Возведение монолитных железобетонных перекрытий при полузакрытом способе строительства подземных сооружений //Подземное пространство мира. — 2002. — № 1. — С. 13–22.

10. Makovetskiy O., Zuev S. Practice device artificial improvement basis of soil technologies jet grouting. Procedia Engineering. — 2016. — Vol. 165: 15th Intern. sci. conf. Underground Urbanisation as a Prerequisite for Sustainable Development 12–15 Sept. 2016, St. Petersburg, Russia. — P. 504–509.

11. Маковецкий О. А. Зуев С. С. Опыт проведения испытаний баретты большой длины в условиях плотной городской застройки // Жилищное строительство. 2018. — № 9 —С. 13–18.

Авторы статьи: 

М. Ю. АБЕЛЕВ, С. С. ЗУЕВ , Р. Р. АХМЕТШИН

Центр инновационных технологий в строительстве Института ДПО ГАСИС НИУ ВЩЭ
АО «Нью Граунд»

 

 

 



Подписывайтесь на нас:

Игорь Мурашов: строительные машины и оборудование XCMG являются воплощением современных высоких технологий и качества


29.06.2020 23:07

Специализированная техника китайского концерна XCMG активно завоевывает российский рынок. Машины и оборудование данного бренда все чаще задействуются на строительных объектах нашей страны. Об особенностях производимых концерном машин, предназначенных для строительства фундаментов и подземных сооружений, рассказал порталу ASNinfo.ru Игорь Мурашов, специалист по буровым установкам компании «СюйГун Ру», являющейся официальным дистрибьютором XCMG в России.


Расскажите поподробнее о деятельности концерна XCMG. Какие достижения можете отметить?

Концерн XCMG ( Xuzhou Construction Machinery Group) был основан в 1989 году в китайском городе Сюйчжоу. За сравнительно короткое время он стал одним из мировых лидеров по производству дорожно-строительной техники. Наша компания ООО «СюйГун Ру» является официальным дистрибьютором XCMG в России, осуществляет поставки большинства видов спецтехники концерна, а также запасных частей.

Приведу несколько показательных цифр. В настоящее время XCMG занимает 4-ое место в мире среди 50-ти крупнейших производителей строительной техники (согласно ежегодному международному рейтингу журнала «Желтая таблица 2020»). Продукция концерна экспортируется более чем в 130 стран мира. Техника, выпускаемая под маркой XCMG, производятся в тесном сотрудничестве с самыми известными мировыми производителями, такими как Liebherr, ThyssenKrupp, Caterpillar. Компании принадлежит контрольный пакет акций компании Schwing - второго по величине производителя бетононасосов в Германии, также немецкой Fluitronics и AMCA Hydraulics  из Нидерландов. Численность персонала XCMG - более 26 тыс. человек.

Добавлю, что более 200 млн долларов концерн инвестировал в строительство производственной площадки в Бразилии, 50 млн евро - в строительство нового исследовательского центра в Krefeld's Europark Fichtenhain в Германии. Создана перспективная производственная площадка в Польше. В самый ближайший период  планируется открыть 12 заводов XCMG за пределами КНР, а также создать 8 региональных центров продаж по всему миру. Можно с уверенностью сказать, что строительные машины и оборудование, производящиеся под брендом XCMG уже давно узнаваемы и являются воплощением современных высоких технологий и качества.

А можете привести данные по производству буровых установок и спецтехники для строительства фундаментов и подземных сооружений?

Подразделение компании по выпуску машин для выполнения фундаментных и специальных подземных работ называется Xugong Foundation Construction Machinery Co., Ltd. Оно было образовано в январе 2010 года. Площадь предприятия занимает около 100 тыс. кв. м, из них 30 тыс. кв. м - производственные корпуса. Штат сотрудников насчитывает всего около тысячи человек, но современные технологический процесс позволяет выпускать около 1100 единиц машин в год.

На текущий момент завод выпускает роторные буровые установки, анкерные буровые установки, установки горизонтально-направленного бурения, проходческие щиты для микротоннелирования, горнопроходческие комбайны, машины для выполнения работ по технологии «стена в грунте» с грейферным навесным оборудованием или гидрофрезой.

Какие модели сейчас производятся в данном сегменте? Какие их  ключевые характеристики можно выделить?

В настоящее время роторные буровые установки XCMG выпускаются под серией XR, крутящий момент вращения ротора которых составляет от 80 кН/м до 793 кН/м. Они способны выполнять работы по различным технологиям: бурение при помощи телескопической штанги келли, CFA (непрерывный шнек), метод раскатки грунта, DTH (пневмоударник). Наш завод буровых машин также может похвастаться тем, что гигантская буровая установка - XR800E - была спроектирована и построена именно на нем. Эта уникальная машина весом в 320 тонн способная бурить диаметром до 4600 мм. Линейка установок «Стена в грунте» серии XG с подъемным усилием 500 - 700 кН с помощью двух синхронно работающих лебедок, расположенных в задней части машины, может сооружать траншеи шириной от 300 до 1500 мм на глубину до 105 м. При этом, по сравнению с классическим тросовым грейфером, его гидравлический собрат обеспечивает более точное копание, с возможностью изменения положения грейфера в траншеи при помощи специальных лап на гидроцилиндрах, которыми можно отталкиваться от стен, тем самым меняя положение грейфера в траншее. Гидравлические фрезы XCMG зарекомендовали себя как высокотехнологичный, точный и производительный инструмент для разработки траншеи «стена в грунте» в твердых и скальных породах. Ширина траншеи может быть от 800 до 1500 мм, а глубина может достигать 85 метров.

Стоит еще упомянуть о популярном в последние годы в России классе многофункциональных машин для укрепления и стабилизации грунтов по таким технологиям, как Jet grouting, анкерное крепление, микросваи и бурение с пневмоударником. В этом сегменте завод представил свою модель XMZ120, способную создать достойную конкуренцию европейским производителям машин подобного класса.

Владельцы и операторы буровых машин XCMG в России уже положительно оценили плавную и информативную работу гидравлики, систему автоматической смазки шарнирных соединений и, как следствие, более легкое и простое ежесменное техническое обслуживание, а также лебедку с намоткой каната в один слой, что позволяет продлить срок службы дорогостоящих стальных канатов на машине.

В качестве производителей комплектующих для буровых машин XCMG были выбраны компании - мировые лидеры по производству компонентов для специальной техники. Это такие всемирно известные бренды, как Cummins, Rexroth, Bonfiglioli, Freudenberg, Hella, Pfeifer, Eaton, FAG и др. Всё вышеперечисленное, в комплексе с высокими стандартами качества XCMG, дает на выходе надежную и сбалансированную по техническим параметрам машину.

Можно ли говорить о глубокой цифровизации продукции XCMG?

Это действительно так. Всем известно, что Китай является лидером в производстве электронных высокотехнологичных систем, которые используются в нашей повседневной жизни, и буровые XCMG так же не остались обделенными высокотехнологичными системами. Так, управление в машинах осуществляется с помощью технологии интеллектуального управления контроллером с CAN шиной, что позволило упростить интерфейс управления и вывести все данные, за которыми должен следить оператор буровой установки во время работы, на один компактный дисплей. Раньше же приходилось следить за множеством достаточно крупногабаритных аналоговых приборов. За всеми неисправностями в работе машины можно также наблюдать в соответствующем меню, быстро находя и понимая, какой датчик или какая система вышли из строя или дали сбой. Ещё одной особенностью китайских машин XCMG является наличие ярких светодиодных фонарей для освещения рабочей зоны. Для слепой зоны сзади и главной лебедки предусмотрены инфракрасные камеры с высоким разрешением, которые, в отличие от традиционных зеркал, обеспечивают хороший обзор в любое время суток и в любую погоду.

Растет ли спрос на буровые установки XCMG в России?

Сейчас буровые установки марки XCMG активно завоевывают российский рынок и доверие наших строителей к китайской строительной технике. География поставок включает в себя многие города России, расположенные в различных климатических зонах и имеющие свои особенности геологических слоев грунта. Роторные буровые установки были проверены в переменчивом климате Приморского края. в Мурманской области им приходилось бурить попадающиеся на разной глубине большие валуны В суровых морозах Сибири и Крайнего Севера они сохраняли возможность работы вплоть до температуры  -40°С. В Москве грейферными установками «стена в грунте» строятся станции метро: «Аминьевское шоссе», «Мичуринский проспект», «Проспект Вернадского», «Славянский мир».

Мы признательны тем людям и компаниям в России, которые оказали нам глубокое доверие и остановили свой выбор на марке XCMG, и надеемся, что другие строители, которые ищут новые машины для своих амбициозных проектов, также выберут XCMG в качестве долгосрочного надежного партнера!

МАТЕРИАЛЫ ПО ТЕМЕ:

Рациональность и эффективность. При строительстве подземных сооружений все активнее применяется технология «стена в грунте»


ИСТОЧНИК ФОТО: Пресс-служба ООО «СюйГун Ру»

Подписывайтесь на нас: