BIM выходит на большую дорогу — 2


30.11.2021 15:53

Газета «Строительный Еженедельник» продолжает рассказ о перспективах распространения BIM-технологий (или, в российском варианте, ТИМ — технологий информационного моделирования) в сфере дорожно-транспортного строительства.


ПО к бою готово

По оценкам экспертов рынка, специализированное программное обеспечение (ПО), необходимое для работе в BIM с объектами транспортной инфраструктуры, присутствует в России и хорошо известно специалистам отрасли. Причем это современные решения, используемые во всем мире.

«Программные продукты на российском рынке ничем не отличаются от решений, распространенных в других странах. Рынок программного обеспечения для строительного проектирования зданий и сооружений, дорожной инфраструктуры давно является международным, и производители разрабатывают универсальные решения, применимые во всех регионах. Различия могут проявляться только в деталях», — отмечает региональный директор бизнес-направления «Технологии для строительства» Trimble Денис Купцов.

При этом, по его словам, стоит учитывать, что российское программное обеспечение в основном поддерживает только российские стандарты, а зарубежное представляет собой локализованный продукт, работающий в соответствии как с российскими, так и с международными нормами.

«Выбор специализированный программных продуктов для моделирования мостовых сооружений невелик. Его предлагают Bentley (OpenBridge) и Allplan (Allplan Bridge). Но в России они широко не применяются. Чаще используются не предназначенные для мостов Revit от Autodesk и Tekla Structures, широко применяемые в промышленном и гражданском строительстве. На рынке труда гораздо больше специалистов, владеющих этими инструментами. И есть гораздо больше обучающих материалов на русском языке в сравнении с OpenBridge и Allplan Bridge», — добавляет BIM-менеджер компании «Айбим» Дамир Ильясов.

По мнению руководителя проектного направления КРЕДО Владимира Каредина, инфраструктурные продукты мировых лидеров, прежде всего Autodesk и Bentley, при всех их выдающихся качествах носят излишне универсальный характер. «Они не обладают функциональностью, имеющейся у качественных специализированных систем моделирования автомобильных дорог, и в значительной степени (безусловно, прогрессивной, но не всегда конструктивной) маскируются BIM-методологией. Сегодня большинство проектно-изыскательских организаций имеют в своем распоряжении продукты разных производителей, т. к. разные задачи лучше или хуже решаются в разных ПП. Ключевыми факторами на сегодняшний день, кроме наличия необходимого инструментария для проектирования, конечно же, являются возможности интеграции и обмена данными, т. к. эти возможности позволяют внедряться в технологические цепочки, основанные на применении ПП разных производителей», — говорит он.

Со своей стороны технический эксперт по направлению «Инфраструктура» Autodesk Алла Землянская отмечает, что на российском рынке программное обеспечение для проектирования дорог представлено шире, чем в других регионах, где работает Autodesk. «Кроме того, в России работают не только крупные международные компании, но и локальные вендоры. Их сильные стороны заключаются в отличном знании специфики проектирования в России, большом опыте работы с местными пользователями — все компании были созданы задолго до всех этих волн импортозамещения и заполучили своих клиентов, создавая хорошие продукты», — отмечает она.

По словам специалиста, именно поэтому сравнение программного обеспечения впрямую, с разбивкой возможностей на отдельные функции и заполнением таблиц, здесь не особо работает. «Все разработчики САПР для дорог представляют довольно зрелые продукты, которые обладают схожим базовым функционалом. Не вижу смысла составлять длинный список из 100 позиций, чтобы найти отличие в одном или двух пунктах. Ключевые отличия лежат явно за пределами стандартного функционала, и поэтому к выбору платформы я бы предложила подходить исходя из задач организации с учетом потенциального роста бизнеса и расширения предоставляемых услуг. Оценивайте, насколько комплексным будет решение: какие возможности предусмотрены для совместной работы, какие форматы данных и файлов поддерживаются, как будет происходить обмен заданиями и моделями между дисциплинами, как формируются сводные модели и выполняется координация, каким образом добавляются атрибуты к элементам модели. Еще я бы обратила внимание на такие факторы, как поддержка картографических сервисов и интеграция с ГИС, а также возможности для расширения функциональности ПО за счет открытых интерфейсов программирования (API) или, например, среды визуального программирования», — говорит Алла Землянская.

Почем внедриться?

Универсальные советы по процессу внедрения программного обеспечения для BIM давать сложно: слишком многое зависит от специализации компании, уровня подготовки сотрудников и размеру организации.

«Время, требуемое для внедрения, может существенно разниться: от полугода до двух лет. Оно зависит от количества сотрудников, их стартового уровня, выбора программных инструментов и пилотного проекта, сложившихся методов работы и процессов взаимодействия участников», — констатирует Дамир Ильясов.

По его словам, рынок подобных услуг довольно широк. От обучения работе в определенных программных комплексах до комплексного внедрения, включая сопровождение реальных проектов и перестроение бизнес-процессов. Порядок внедрения, как правило, такой: анализ существующей ситуации в организации; обучение специалистов; выполнение пилотного проекта; разработка регламентов и шаблонов.

По означенным причинам сильно варьируется и сумма оплаты внедрения BIM-технологий. «Итоговая стоимость внедрения, без учета количественных показателей по имеющимся ресурсам (количество специалистов и др.), в основном зависит от уровня существующей технологии в организации, т. к. при более высоком технологическом уровне цифрового проектирования и отлаженной системе электронного документооборота процесс внедрения ТИМ в целом на порядок проще и менее затратен. Что касается средней стоимости, то здесь может быть достаточно большой разрыв между минимальной и максимальной стоимостью, т. к. надо понимать, от чего отталкиваться и к чему стремиться, но в любом случае стоимость ПО для обеспечения технологии BIM будет в несколько раз выше услуг по ее внедрению», — отмечает Владимир Каредин.

По его данным, на российском рынке стоимость только услуг (без цены ПО) варьируется от 500 тыс. до 3 млн рублей для организации со штатом порядка трех-пяти групп по проектированию в составе трех-пяти человек. «Именно поэтому среднее значение в данном случае не несет в себе какого-либо ориентира», — добавляет эксперт.

Новации BIM, и не только

Все компании, предлагающие на российском рынке программные продукты для BIM, говорят о том, что совершенствование их ПО продолжается. Создаются новые, более эффективные версии, предлагаются новые специализированные продукты.

«Мы постоянно работаем над совершенствованием наших программных продуктов, чтобы сделать их еще более удобными для пользователей. Так, в этом году мы выпустили обновление программного обеспечения Tekla Structures 2021. Для проектирования мостов у нас есть решение Tekla Bridge Creator, позволяющее создавать информационные модели мостов разного назначения и конструкции. Работа над обновлениями — это постоянный процесс, который никогда не останавливается», — отмечает Денис Купцов.

Продуктовые менеджеры из Autodesk один-два раза в год публикуют дорожные карты по ключевым продуктам. «Они дают представление, как будет развиваться продукт. Самыми значительными изменениями в линейке ПП для проектирования автодорог я бы назвала следующие: усовершенствование инструментов передачи данных по коридорам между Civil 3D и InfraWorks; поддержка формата DWG в BIM Collaboratе Pro, открывающая проектировщикам линейных сооружений полный доступ к рабочим пространствам и работе с пакетами данных; появление шаблонов коридоров; полная переработка рабочих процессов по управлению целевыми объектами в коридорах; копирование свойств областей коридоров; появление нового модуля Project Explorer, полностью меняющего возможности работы с геометрическими данными моделей за счет нового интерфейса быстрого доступа к объектам; появление среды визуального программирования Dynamo для Civil 3D; появление связанных трасс, упрощающих проектирование развязок и примыканий; усовершенствование инструментов создания элементов обустройства дорог в InfraWorks и др.», — рассказывает Алла Землянская.

Владимир Каредин считает, что нецелесообразно, используя современные цифровые технологии, ограничиваться только BIM. «На текущий момент, невзирая на всеобщий бум вокруг фантастических перспектив, которые якобы принесет технология BIM, мы все же реально смотрим на ситуацию и не сомневаемся в том, что получение реальных выгод произойдет еще не скоро. Поэтому стремимся уделять внимание и другим выгодным, быстрым и эффективным технологиям как по части получения высокоточных цифровых моделей окружающего пространства, так и  по части повышения уровня автоматизации во всех процессах. Мы продолжаем совершенствовать и активно развиваем следующие направления: обработка данных лазерного сканирования и распознавания объектов при помощи обучаемых нейронных сетей; интеграция и обмен данными; повышение степени автоматизации формирования информационных моделей; технологии строительного контроля; совершенствование методов оценки проектных решений и другие развивающиеся эффективные технологии изысканий и проектирования», — говорит он.

 

МАТЕРИАЛЫ ПО ТЕМЕ:

BIM выходит на большую дорогу


АВТОР: Петр Опольский
ИСТОЧНИК ФОТО: https://c-inf.ru


Задачи управления промышленными объектами через создание цифрового двойника предприятия


22.04.2021 14:24

Модернизация производства — это комплексное, частичное или полное обновление систем или оснащения на предприятии. Данный процесс влечет за собой целый ряд мероприятий, среди которых большую часть занимает тщательный анализ и сбор информации.


В данной статье предлагается затронуть тему цифровых двойников[1] предприятий и их реализацию в виде набора цифровых информационных моделей.

В последние годы эта тема становится все более востребованной и острой. Среди причин такого повышенного интереса можно отметить:

  • объявление национальной программы «Цифровая экономика Российской Федерации»;
  • выполнение задач цифровизации строительной отрасли (раздел «Цифровизация строительной отрасли» в проекте «Стратегии развития строительной отрасли до 2030 года»[2]);
  • рост применения технологий информационного моделирования;
  • появление на рынке труда молодых специалистов, владеющих инструментом.

Все чаще владельцы предприятий и представители государственных структур обращают внимание на новые технологии применительно к своим задачам, в том числе и при решении вопросов модернизации. Ни для кого не секрет, что основная масса предприятий построена в прошлом веке и не соответствует современным требованиям. И, следовательно, чтобы вывести оных в список лидеров мирового технологического процесса и наилучших доступных технологий, необходима их модернизация. Это задача стратегического уровня. Политическая и экономическая обстановка, связанная с санкциями, пандемией и рядом других причин, только обострила эту необходимость.

Что же может позволить решить задачу цифровизации строительной отрасли в промышленном кластере? И почему именно о нем стоит говорить?

В России, на первый взгляд, есть все  предпосылки для резкого роста и развития новых  подходов к управлению через создание цифровых двойников: на правительственном уровне приняты или принимаются необходимые решения, говорящие об особом статусе задач цифровизации в строительной отрасли; в проектных организациях строительной отрасли полным ходом идет освоение технологий информационного моделирования; высшие учебные заведения меняют свои программы с учетом государственного заказа и общемировыми тенденциями; инвесторы и заказчики наконец-то научились не только выговаривать, но и понимать основной смысл и назначение технологий информационного моделирования (BIM-технологий). И надо отметить, что Россия быстро наверстывает разрыв в этом направлении.

Основные усилия по внедрению технологий информационного моделирования сейчас направлены на рынок жилищного строительства и госзаказ объектов социальной направленности. Однако даже рынок жилищного строительства не выдает ожидаемых результатов, если говорить о полном жизненном цикле объектов капитального строительства. И связано это в первую очередь с разрывом интересов игроков — инвестор (заказчик), как правило, не участвует в дальнейшей эксплуатации произведенной продукции, будь то жилые дома, школы, поликлиники или административные здания. И, как следствие, управляющие компании или комитеты городских структур, которым в дальнейшем предстоит эксплуатация этих объектов, имеют или мизерное представление о BIM и собственной вовлеченности в процесс цифровизации, или не имеют его вовсе.

И все-таки нельзя утверждать, что цифровые двойники в жилищном комплексе на территории России отсутствуют. Такие примеры есть, и связаны они только с крупными частными застройщиками, осваивающими территорию Москвы. Например, PSN Group (ТОП-5 девелопер Москвы по результатам 2016 года) была внедрена Единая система мониторинга, управления и аналитики для сети жилых комплексов (используются модели зданий), которая находится в промышленной эксплуатации, но по-прежнему постоянно развивается: происходит подключение новых жилых комплексов, разрабатываются новые модули, связанные с предикативным анализом работы оборудования, формируются планы развития[3]. Это скорее исключительный случай.

Другое дело — промышленные объекты. Любое предприятие проходит полный жизненный цикл от появления идеи до демонтажа, сохраняя интерес своего заказчика — управленца. И вот тут-то можно и должно в полной мере почувствовать преимущества применения технологий информационного моделирования в качестве создания цифрового двойника промышленного объекта.

Современный мир предлагает для решения таких задач множество технологий, концепций и инструментов: PLM/PDM, BigData (Большие данные), IIoT[4] (Промышленный интернет вещей), Cloud Computing (Облачные вычисления), GIS (Геоинформационные системы), BIM/openBIM и другие. Все это может быть востребовано при решении множества задач управления объектами предприятия, одной из которых является модернизация. Например, создание цифрового двойника путем формирования цифровых информационных моделей производственных цехов поможет собрать данные о состоянии оборудования, об основных и оборотных средствах, а также о производственных процессах и проанализировать их с помощью специализированных систем.

Модернизация предприятия без снижения объемов производства и, тем более, без его остановки — это задача, которая под силу современным технологиям. Кто-то может возразить, что такие задачи решались и прежде. Решались, но сейчас главный фактор — это время.

Несколько лет назад шли постоянные обсуждения отсутствия стандартов по технологиям информационного моделирования, а сейчас уже речь идет о более глубокой их проработке и применимости к особенностям российского рынка.

Если еще десять лет назад разворачивались целые баталии на тему отсутствия интеграции при применении программного обеспечения разных вендоров, то сейчас и этот вопрос начинает уходить в прошлое. Разработчики программного обеспечения становятся более открытыми друг другу, понимая, что не могут покрыть весь спектр решаемых в строительной отрасли задач. В качестве стандарта обмена и управления данными об объектах строительства в Российской Федерации принят формат IFC (Industry Foundation Classes — формат данных с открытой спецификацией)[5].

Так что же препятствует появлению цифрового двойника предприятия и его участия в вопросах модернизации и, возможно, в дальнейшем в задачах управления активами?

Ответ простой — желание заказчика, его умение идти к поставленной цели и добиваться ее, так как этот процесс невозможно решить в укороченные сроки.

В 2019 году Роснефть запустила в опытно-промышленную эксплуатацию цифровой двойник своего месторождения в Башкирии — проект «Цифровое месторождение»[6], выстраивая тем самым интегральную цепочку нового типа, включающую в себя «цифровое месторождение», «цифровой завод» и «цифровую АЗС». Разработка и запуск проекта «Цифровое месторождение» осуществляется в рамках стратегии «Роснефть-2022», предусматривающей переход на качественно новый уровень управления бизнес-процессами, повышение надежности и экономичности производства, сокращение потерь. Хоть в приведенном примере есть упоминание о «цифровом заводе», но все же выполненная работа относится к управлению производственными процессами, а не промышленными объектами недвижимости.

А вот другой пример. Как сообщается на сайте компании «Газпром нефть»[7] от 27 октября 2020 года, «Газпром нефть» получила патент на собственную цифровую разработку — Систему управления инженерными данными (СУПРИД). Система формирует электронные модели производственных установок — цифровые двойники, включающие в себя инженерно-техническую документацию и 3D-модель объектов. Сейчас СУПРИД охватывает Московский и Омский НПЗ «Газпром нефти», позволяя на 20% сократить временные затраты на выполнение регламентных мероприятий по эксплуатации, ремонту и обслуживанию. Экономический эффект от внедрения системы на нефтеперерабатывающих заводах компании оценивается более чем в 700 млн рублей в год.

Итак, видно, что процесс создания цифровых двойников предприятий уже начал свое движение по территории России, и хочется верить в появление новой технологии, которая с каждым годом будет все более востребованной и совершенной. Однако, прикоснувшись к цифровым двойникам в жизни, понимаем, что пока это или попытка перевести привычный процесс проектирования на новый уровень, или подтягивание моделей зданий без информационной части к своим системам автоматизации, или же моделирование без учета всех последующих задач использования цифровых информационных моделей: эксплуатация, модернизация, управление активами и так далее.

В массе случаев появляющихся на свет цифровых двойников видно, что отсутствует главное — требования заказчика, которые зафиксированы в виде документов и будут неукоснительно выполняться исполнителями; что зачастую исполнители живут интересами, очерченными рамками своих договоров и получением вознаграждения за свой труд, без желания понять, что за  каждым этапом жизненного цикла объекта до момента его ликвидации идет следующий этап со своими задачами, использующими результаты предыдущего этапа, и что несогласованный переход от одного этапа к другому может привести к большим финансовым издержкам. А ведь технологии информационного моделирования предназначены для наименее рискового прохождения объекта капитального строительства по всему жизненному циклу. Но для этого надо просто правильно организовать работу. Это значит, что впереди предстоит много интересной работы.

Ирина Чиковская

Компания ООО «Бюро ЕСГ» — это системный интегратор, который принимает активное участие в проработке правильного подхода к созданию цифровых двойников промышленных объектов. Нашими клиентами являются крупные промышленные компании в нефтегазовой, сталелитейной, судостроительной и других отраслях. «Бюро ЕСГ» имеет многолетний опыт по внедрению технологий информационного моделирования, применению технологий лазерного сканирования, созданию систем управления инженерными/проектными данными, использованию геоинформационных систем и их интеграции с цифровыми информационными моделями. Наша компания предоставляет полный комплекс услуг по разработке технологии создания цифрового двойника предприятия с учетом его последующего использования.

За последние годы специалистами ООО «Бюро ЕСГ»[8] выполнены и продолжают выполняться работы по созданию цифровых двойников как на основе лазерного сканирования, так и с использованием проектной, рабочей и исполнительной документации. ООО «Бюро ЕСГ» принимает активное участие при разработке требований заказчиков к цифровым информационным моделям в различных отраслях промышленности[9], в том числе для ПАО «Газпром нефть», а также в разработке методик создания цифровых информационных моделей с применением программного обеспечения разных разработчиков.

ООО «Бюро ЕСГ» принимает участие в пилотных проектах по разработке импортозамещающих систем управления инженерными данными и их интеграции с цифровым двойником предприятия. Группой специалистов ООО «Бюро ЕСГ» по геоинформационным системам реализован ряд проектов по созданию электронного генплана, а также интеграции BIM и 3D-ГИС.

[1] Цифровой двойник (англ. Digital Twin) — цифровая копия физического объекта или процесса, помогающая оптимизировать эффективность бизнеса. Концепция «цифрового двойника» является частью четвертой промышленной революции и призвана помочь предприятиям быстрее обнаруживать физические проблемы, точнее предсказывать их результаты и производить более качественные продукты. Википедия.

[2] https://nopriz.ru/upload/iblock/892/TSifrovizatsiya-stroitelnoy-otrasli-dlya-Strategii.pdf

[3] Информация получена с интернет-ресурса https://hmps-business.ru/portfolio/sistema-monitoringa-upravleniya-i-analitiki-dlya-psn-group.html

[4] Промы́шленный интерне́т веще́й (англ. Industrial Internet of Things, IIoT) — это система объединенных компьютерных сетей и подключенных к ним промышленных (производственных) объектов со встроенными датчиками и программным обеспечением для сбора и обмена данными с возможностью удаленного контроля и управления в автоматизированном режиме, без участия человека. Применение Интернета вещей в промышленности создает новые возможности для развития производства и решает ряд важнейших задач: повышение производительности оборудования, снижение материальных и энергетических затрат, повышение качества, оптимизация и улучшение условий труда сотрудников компании, рост рентабельности производства и конкурентоспособности на мировом рынке. Википедия.

[5] ГОСТ Р 10.0.02-2019/ИСО 16739-1:2018 Система стандартов информационного моделирования зданий и сооружений. Отраслевые базовые классы (IFC) для обмена и управления данными об объектах строительства.

[6] Более полную информацию можно получить на сайте Роснефть (https://www.rosneft.ru/press/news/item/195043/).

[7] «Газпром нефть» защитила патентом собственную систему управления инженерными данными

https://www.gazprom-neft.ru/press-center/news/gazprom_neft_zashchitila_patentom_sobstvennuyu_sistemu_upravleniya_inzhenernymi_dannymi/

[8] Более подробно об опыте компании ООО «Бюро ЕСГ» и предоставляемых услугах можно узнать на сайте http://esg.spb.ru

[9] Автор статьи в период работы в СПб ГАУ ЦГЭ (Центр государственной экспертизы Санкт-Петербурга) сформулировала требования к цифровым информационным моделям, представляемым для проведения  экспертизы в Санкт-Петербурге (https://www.spbexp.ru/docs/podgotovka-informatsionnykh-modeley-bim/), которые уже успешно применяются и продолжают развиваться.

 


АВТОР: Ирина Чиковская
ИСТОЧНИК ФОТО: пресс-служба ООО «Бюро ЕСГ»


Горизонтально направленное бурение : выбирая высокую производительность


21.04.2021 12:49

Технология горизонтально направленного бурения (ГНБ) продолжает внедряться в работы по подземной прокладке коммуникаций и становится все более востребованной.


Горизонтально направленное бурение – один из современных методов бестраншейной подземной прокладки коммуникаций. Данная технология достаточно давно и активно применяется в зарубежных странах,  в некоторых даже считается основной. В России ГНБ используется немного реже, тем не менее, отмечают эксперты, такой способ прокладки подземных сетей становится все более востребованным как у заказчиков работ, так и подрядных организаций.

По словам генерального директора СРО А «Подземдорстрой», исполнительного директора Тоннельной ассоциации Северо-Запада Сергея Алпатова, в течение последних 15 лет в стране объемы применения бестраншейных технологий в целом и техники и технологий ГНБ в частности растут. В последние годы отраслевой расклад в процентном отношении по объемам применения технологии ГНБ выглядит следующим образом: строительство и ЖКХ – 34% , электроэнергетика – 30%, транспорт нефти и газа - 18%, инженерные коммуникации - 23%, нестандартные применения - 5%.

«Техника и технология ГНБ эффективна и оправдана всегда, когда производство работ по строительству и реконструкции трубопроводов различного назначения по традиционным технологиям с внешними экскавациями грунта затруднено или попросту невозможно. Это федеральные автомобильные трассы, железные дороги, взлетно-посадочные и рулежные полосы аэродромов, улицы современных городов – не только мегаполисов с многомиллионным населением, но и небольших населенных пунктов. Применение технологии ГНБ эффективно при строительстве трубопроводов с пересечением водных преград – при выполнении работ открытым способом рыба в таких реках и водоемах не водится еще как минимум лет десять из-за нарушения экологического баланса. К примеру, в Санкт-Петербурге более 60% сетей водоснабжения и водоотведения было отремонтировано с применением техники и технологии ГНБ и подобная ситуация наблюдается во всех крупных российских городах. Что касается эффективности эксплуатации техники и технологии ГНБ, не существует ситуаций, когда их применение при наличии определенных ограничений на открытый метод работы, ведет к удорожанию проекта. Если учитывать стоимость строительства альтернативных объектов, затраты на восстановление зеленых насаждений и асфальтового покрытия, неудобства, связанные с нарушением транспортного режима, технология ГНБ всегда окажется намного эффективнее и экономичнее, чем открытый способ строительства», - не сомневается Сергей Алпатов.

Руководитель ООО «Велес Инженерные Сети» Герман Усанов также отмечает высокую технологичность ГНБ, но делает выводы, что пока она достаточно активно задействуется только в крупных городах, где высока конкуренция на рынке строительства подземных коммуникаций. К сожалению, многие организации на периферии считают технологию ГНБ слишком дорогой в сравнении с открытым способом прокладки трубопровода (ручной/механизированный способ разработки грунта).

Герман Усанов напомнил, что ГНБ – это один из нескольких методов бестраншейной прокладки труб. У каждой технологии свое поле применения и свои потребители, все зависит от задач. Непосредственно метод ГНБ выполняется в три этапа, из которых первый – это пилотное бурение, которое является управляемым как по профилю, так и в плановой части. Второй этап – это расширение скважины. Процесс абсолютно неуправляемый, т.е. расширитель (специальный инструмент для формирования скважины) ведет себя хаотично вплоть до того, что может отклониться от заданного пилотного бурения в ту или иную сторону, где меньше сопротивление грунта. «Именно поэтому данный метод не используется для прокладки самотечных канализаций, ведь при третьем этапе – протяжка трубопровода, труба ляжет так, как сформирована скважина, имея естественные некритичные эксплуатационные изгибы. Во всех остальных случаях ГНБ универсальный и эффективный метод, менее затратный в плане подготовительных работ и высокий по производительности», - добавил он.

Стоит отметить, что эффективность технологии ГНБ во многом зависит и от  применяемого бурового оборудования. В настоящее время оно иностранного производства. Руководитель отдела продаж ООО «ДДВ» Андрей Штемпель подчеркивает, что сейчас основные поставщики — это США и Китай. Но кроме страны происхождения, буровые установки отличаются своей оснащенностью, удобством эксплуатации, уровнем предлагаемого сервисного обслуживания и, конечно, ценой. При выборе буровой установки необходимо обращать внимание не только на основные параметры самой машины, но и на качество сервисного обслуживания. «2020 год стал отчасти переломным в поставках установок ГНБ на российский рынок. В частности, объем поставок американских установок значительно снизился. Это связано, прежде всего, с дороговизной в обслуживании данных установок и большой востребованностью и доступностью китайских моделей. При этом увеличился ввоз китайских брендов, но не всех. Основные поставщики потеряли объемы поставок в среднем на 20 %, но бренд DDW увеличил количество завозимых машин на 60 %! В текущем году мы планируем очередной прирост в объеме поставок наших машин DDW на 20% и выход на лидирующие позиции в России. В настоящее время понятно, что направление ГНБ продолжит уверенное развитие в России, большие установки класса Макси будут более универсальными и станут применяться как для ГНБ так и в нефтяной промышленности для добычи тяжелой нефти», - считает он.

По словам Андрея Штемпеля, серьезное внимание при ГНБ следует уделять и подбору бентонита и полимеров. Это вспомогательные материалы, применяемые при бурении.  Прежде всего нужно уточнить их состав, предварительно оценив необходимость данного продукта. На некоторых объектах бентонит и полимеры могут и вовсе не понадобиться. Для грамотного подбора и приготовления бурового раствора нужно начать с изучения грунта на объекте, получить шурфы, провести «лабораторию» с использованием нескольких образцов бентонита и выбрать наиболее оптимальный, при этом не выйдя за рамки бюджета.

Мнение

Герман Усанов, руководитель ООО «Велес Инженерные Сети»

Что касаемо факторов выбора, обслуживания и обновления, то есть один весомый аргумент: любая техника требует ухода и своевременного обслуживания, а чтобы эксплуатация была бережной и предсказуемой, нужно исключить использование техники на предельных нагрузках. Для каждого ГНБ перехода есть свой класс установок. Также надо стараться «не пускать технику по рукам», стараться, чтобы оператор был один – это самое основное. Все остальное аналогично эксплуатации любой спецтехники, правда, если запустить инструмент, нарушить технологию или по иным причинам оставить/похоронить при протяжке колонну в земле – это чревато колоссальными издержками, ведь хороший инструмент порой стоит не дешевле самой установки.


АВТОР: Виктор Краснов
ИСТОЧНИК ФОТО: http://www.gnbist.ru