Фасадные краски и штукатурки


31.10.2021 22:39

Фасадные краски и штукатурки помогают делать внешний вид дома привлекательным и оригинальным. Чтобы материал обладал длительным эксплуатационным сроком и хорошо выглядел, перед покупкой разберитесь в особенностях, преимуществах и недостатках каждого вида.


Фасадная штукатурка

Наиболее простой и распространенный метод отделки наружной стены — оштукатуривание. Обычно используют фасадную теплоизоляционную систему, крепящуюся к наружной стене фиксатором и клеевым составом, которая состоит из трех слоев:

  • минеральной ваты;
  • армирующей сетки;
  • штукатурного слоя.

По сравнению с другими типами фасадной отделки, у материала есть несколько преимуществ:

  • штукатурка защищает стены от влаги;
  • пропускает воздух.

Благодаря использованию различных методов и приемов нанесения получаются красивые текстуры поверхности. Выбирая составы с разнообразными наполнителями, сможете создавать отделку с отличными показателями:

  • теплоизоляции;
  • звукоизоляции;
  • защиты от действия радиации.

При необходимости со временем отделку можете обновлять, изменяя ее фактуру и цвет.

Оштукатуривание фасада
Оштукатуривание фасада
Источник: https://lite-gold.ru

Акриловая штукатурка

Акриловый состав — это готовая к использованию масса. Вяжущее вещество в такой штукатурке — водная дисперсия смолы синтетического происхождения. Поэтому материал хорошо отдает влагу, которая проникает в структуру стен и отделки. В результате вероятность появления конденсата внутри сооружения уменьшается.

Акриловый состав устойчив к температурным перепадам. У штукатурки отсутствует нейтральная электростатичность, поэтому к ней пристает грязь. Благодаря низкой поглощаемости материала загрязнение не проникает в структуру отделки и легко удаляется. Для защиты от микроорганизмов добавляйте в состав специальную добавку.

Акриловая штукатурка
Акриловая штукатурка
Источник: https://kraski-net.ru

Минеральная фасадная штукатурка

Минеральную штукатурку производят из крошки, цемента и добавок, которые улучшают качества материала. Отделку ценят за повышенную прочную и невысокую стоимость. Преимущество минерального состава — самостоятельная защита от действия грибка и плесени.

Недостаток — ограниченная цветовая гамма, но проблема легко решается. Можете нанести слой белой штукатурки, а затем прокрасить поверхность силикатной краской необходимого оттенка.

Минеральная штукатурка
Минеральная штукатурка
Источник: https://mramorin.ru

Силиконовая штукатурка

Минеральную штукатурку производят в виде готовой к нанесению массы. Основа силиконового состава — кремниевая органическая смола.

Основное преимущество — повышенная пропускная способность. Поэтому ее используют для отделки наружной стены, когда не разрешается применять акриловый материал. Например, состав отлично подходит для отделки фасада с поверхностью из ячеистого бетона. Благодаря нейтральной электростатичности штукатурка не притягивает пыль и грязь, которые находятся в воздухе.

Силиконовая штукатурка
Силиконовая штукатурка
Источник: http://nuzgno.ru

Силикатная штукатурка

К самому дорогому виду штукатурки относят силиконовый состав, характеризующийся несколькими преимуществами:

  • хорошей пропускной способностью;
  • эластичностью;
  • многообразием оттенков.

Основа силикатного состава — жидкое калийное стекло. Ценят штукатурку за способность самостоятельного очищения. Для удаления загрязнений не придется применять особые препараты и прилагать усилия. Покрытие отлично очищается и отмывается после атмосферных осадков.

Силикатная штукатурка
Силикатная штукатурка
Источник: https://myshtukaturka.ru

Фактура штукатурной отделки

Вид материала выбирайте, ориентируясь на характер, вид фасада и собственные предпочтения. Перед покупкой определитесь с фактурой отделки.

Технология нанесения тонкослойного состава разного типа одинакова. Фактура бывает:

  • рустикальной (поверхность затирайте произвольными движениями в различных направлениях: по кругу, горизонтально, вертикально);
  • шероховатой (для создания фактуры поверхность затрите, выполняя круговые движения);
  • в виде песчаника (создают при помощи минеральной штукатурки, применяя состав с кварцевым и известковым наполнителем).

Чтобы сделать отделку, которая имитирует натуральный камень, применяйте состав с мелкой крошкой.

Как выбрать фасадную штукатурку

При выборе смеси учитывайте общие характеристики:

  1. Гарантированную длительность эксплуатации. Оштукатуривание фасадной стены — это сложная строительная работа. Поэтому не покупайте смеси, на которые производитель дает запас гарантии до 15 лет.
  2. Устойчивость штукатурки к агрессивному действию окружающей среды.
  3. Паропроницаемость.
  4. Коэффициент адгезии с основанием. Декоративное покрытие должно крепко соединяться с цементно-песчаной смесью.
  5. Устойчивость к ультрафиолетовому излучению.

Также учитывайте стоимость. На этот фактор влияет назначение здания, его размеры и ваши финансовые возможности.

Оштукатуривание фасадной стены
Оштукатуривание фасадной стены
Источник: https://saucyintruder.org

Виды красок

На рынке представлено большое разнообразие фасадных красок, которые отличаются по стоимости, эксплуатационным качествам и области использования. Чтобы правильно выбрать колер, детально ознакомьтесь с особенностями всех видов.

Силиконовая

Силиконовая краска — это вододисперсионный материал, изготовленный на основе водной эмульсии силиконовой смолы. Состав содержит наполнители и добавки, которые:

  • улучшают эксплуатационные характеристики краски;
  • придают надежность и прочность;
  • ускоряют время засыхания.

Материал ценят за эластичность, так как краска легко наносится на стены с любой текстурой. Обладает отличной паропроницаемостью, грязеотталкивающими и водоотталкивающими качествами, благодаря которым долго сохраняет первоначальный внешний вид.

Продается краска в белом цвете. Для получения желаемого оттенка, ее колируют. Рекомендовано наносить на поверхность при температуре +5°…+30°С. Подходит для окраски:

  • штукатурки;
  • кирпича;
  • бетона.

Благодаря высокой эластичности краска помогает заделывать мелкие трещины на поверхности стены, делая поверхность идеально ровной и гладкой.

Материал устойчив к щелочам. Поэтому приступать к покраске можете через два дня после нанесения на стены штукатурки (другие виды красок разрешается использовать не ранее, чем через 30 дней). Полное высыхание происходит за 12 часов.

К преимуществам относят:

  • отличную переносимость низкой температуры;
  • отсутствие резких запахов;
  • хорошие влагоотталкивающие качества, препятствующие оседанию грязи и пыли;
  • температурный диапазон во время эксплуатации (-50°…+70°С);
  • износоустойчивость;
  • длительное время эксплуатации;
  • устойчивость к возникновению плесени и грибков.

Из недостатков выделяют высокую цену и отсутствие готового цветового решения (для получения нужного оттенка краску колеруют).

Силиконовая краска
Силиконовая краска
Источник: https://goodhandwork.ru

Цементные

Цементная краска предназначена для фасада, покрытого штукатуркой. Основа состава — портландцемент. Подходит для применения в регионах с повышенной влажностью.

К преимуществам относят повышенную устойчивость к механическому действию и сырости. Недостаток — отсутствие бактерицидных веществ, из-за чего увеличиваются риски возникновения грибка. Поэтому перед работой добавьте в цементную фасадную краску антисептические компоненты.

Цементная краска
Цементная краска
Источник: https://belinka-spb.ru/

Акриловые

Акриловые фасадные краски — красящие смеси высокого качества, изготовленные на основе акриловых кислот в виде смол с добавками, которые отвечают за длительные эксплуатационные качества.

Можете приобрести краску на растворителе:

  • водоэмульсионном;
  • органическом.

Водоэмульсионный акриловый состав удобен в работе. При загустевании можете разбавлять обычной водой, пока не получите нужную консистенцию. Второй слой краски разрешается наносить спустя полчаса. На полное высыхание уходит 24 часа. Благодаря хорошей текучести можете окрашивать поверхность сложной конфигурации.

К преимуществам относят:

  • устойчивость к ультрафиолетовому излучению (краска не выгорает и надолго остается яркой и насыщенной);
  • высокую прочность материала;
  • влагоустойчивость;
  • долговечность краски (срок службы не менее 7 лет);
  • устойчивость к резкому перепаду температуры;
  • эластичность, скрывающую дефекты стен;
  • хорошую паропроницаемость.

К недостаткам относят высокую стоимость, необходимость колеровать красящий состав. Акриловая краска плохо держится на бетонных стенах. Перед нанесением обрабатывайте их грунтовкой.

Акриловая фасадная краска
Акриловая фасадная краска
Источник: https://www.otovarah.ru

Известковые

Используют для окраски штукатурки крайне редко. В основе — гашеная известь. Рекомендовано применять для окраски оштукатуренной стены в подсобном строении. Поэтому свес кровли должен быть значительным, а высота здания допускается не более одного этажа. Иначе покрытие фасада будет недолговечным.

К преимуществу относят:

  • отличные бактерицидные качества;
  • высокую паропроницаемость;
  • низкую стоимость.

Недостаток — необходимость постоянного обновления покрытия, так как краска постепенно смывается атмосферными осадками. Выбор оттенков ограничен.

Известковая краска
Известковая краска
Источник: https://eurofinkraski.ru

Силикатные

Для долговечности и износостойкости в силикатные фасадные краски добавляют определенные элементы. Продается материал в готовом виде. Добавлять колер не надо. Подходит для окраски:

  • бетона;
  • шифера;
  • камня;
  • кирпича;
  • стекла;
  • керамики.

К преимуществам относят:

  • доступную стоимость;
  • устойчивость к ультрафиолету (при постоянном воздействии солнечных лучей краска длительное время сохраняет первоначальный вид);
  • предотвращение образования на поверхности грибков и плесени;
  • легкое очищение;
  • устойчивость к действию химических веществ.

Главное преимущество — краска не разрушается под действием резких перепадов температур. Поэтому подходит для использования в районах с изменчивым климатом.

Основной недостаток — токсичность. В процессе нанесения краски используйте специальные защитные средства. К тому же у материала плохая эластичность, из-за которой у вас не получится заделать мелкие дефекты на поверхности. Наносить разрешается только на гладкую без рельефов штукатурку.

Долговечность — это одновременно преимущество и недостаток краски. При необходимости обновления дизайна удалить материал практически невозможно.

Силикатная краска
Силикатная краска
Источник: https://woodmaster-shop57.ru

Резиновые

В состав резиновой краски входят:

  • вода;
  • латекс;
  • специальные добавки;
  • антифриз, увеличивающий морозостойкость состава.

После отвердевания на поверхности краска становится не только прочной, но и эластичной.

К плюсам относят:

  • универсальность нанесения: краскопультом, кистью, валиком;
  • отличную паропроницаемость;
  • минимальный расход;
  • высыхание в течение 1,5 часа.

Краска подходит для оштукатуренных поверхностей и отделки любых частей строения. Пленка значительно растягивается, поэтому резиновую краску применяют для окрашивания здания, которое характеризуется неполной усадкой. Технология нанесения не нуждается в определенном опыте и подготовке основы.

Резиновая краска
Резиновая краска
Источник: https://voronezh.tekato.ru/

Как определить необходимый объем краски

Предварительный расчет проводите до начала работы:

  • замерьте линейные параметры фасада;
  • определите общую площадь поверхности;
  • рассчитайте совокупную площадь участков, которые не надо окрашивать: дверные и оконные проемы, колонны;
  • найдите разницу полученных значений;
  • посмотрите на этикетке расход краски на метр квадратный и умножьте на полученную площадь, предназначенную для окраски.

В инструкции указывают рекомендованный расход для профессионалов. Если вы обрабатываете рельефные участки, то объем становится больше. Поэтому результат полученного вычисления необходимого объема краски увеличивайте на 15%. Также учитывайте рекомендованное производителем количество нанесения слоев.

Как выбирать фасадную краску

Фасадная краска высокого качества выполняет эстетическую и защитную функцию, помогая оберегать фасад дома от негативного воздействия внешних факторов. Время эксплуатации и прочность стены зависят от цветного покрытия, поэтому при покупке обращайте внимание на красящий состав.

Лакокрасочный материал для фасада должен:

  • обладать устойчивостью к влаге и атмосферным осадкам;
  • сохранять внешний вид под постоянным действием солнечных лучей;
  • быть защищен от образования грибков и плесени;
  • оставаться без трещин после резких перепадов температур.

В таблице указаны показатели, на которые обращайте внимание при выборе фасадной краски:

Показатель

Описание

Объем связующих средств в составе фасадной краски

Связующими средствами в фасадных красках выступают смолы:

·         акриловые;

·         виниловые;

·         силиконовые;

·         силикатные.

Отличаются они друг от друга свойствами, стоимостью, областью использования.

Чем выше цена краски, тем больше концентрация связующих смол, положительно влияющих на долговечность.

Реакция на действие солнечных лучей

Выбирайте состав, который устойчив к ультрафиолетовому излучению и длительное время сохраняет насыщенный цвет и красивый вид.

Паропроницаемость

Паропроницаемость — это показатель, который отвечает за скорость проникновение влаги через толщу краски. Выбирайте уровень не менее 130 г/м2 в сутки.

Водопроницаемость

Чтобы уберечь покрытие стены от быстрого разрушения, выбирайте лакокрасочный материал с высоким показателем водонепроницаемости.

Долговечность

Для красивого внешнего вида с фасадного покрытия регулярно удаляют загрязнения. Износостойкий материал должен выдерживать не менее 5000 циклов очищения.

Расход краски

На покраску 1 м2 уходит 100-300 г. При этом учитывайте, что для насыщенного цвета придется наложить 2-3 слоя краски. Для штукатурного и шероховатого фасада придется использовать в три раза больше колера, чем для гладкой и ровной стены.

Преимущества фасадной краски для наружных работ

Основное преимущество — это дополнение и усиление полезных качеств штукатурки. Также краска:

  1. Не пропускает влагу. В результате стены меньше промокают, реже разрушаются, а сооружение служит гораздо дольше.
  2. Гигроскопична. Поверхность стен не накапливает конденсат, который образуется из-за разности температурных режимов снаружи и внутри помещения.
  3. Мало подвергается атмосферному воздействию.
  4. Сохраняет качества при температуре от -50° до +70°С.
  5. Останавливает проникновение в стены вредных микроорганизмов.

Краска — это долговечное и красивое покрытие, которое не менее 10 лет сохраняет первоначальный внешний вид и заявленные свойства. Чтобы материал лег как надо и долго прослужил, правильно его выбирайте и соблюдайте технологию нанесения.

Красить фасады обычной краской, предназначенной для внутренней работы нельзя. Она не рассчитана на агрессивное действие ультрафиолетового излучения и начинает выгорать спустя 2-3 месяца.

Фасадная краска для наружных работ
Фасадная краска для наружных работ
Источник: https://www.brick-66.ru

Советы по подбору краски для фасада

Чтобы не ошибиться с выбором краски, воспользуйтесь советами:

  1. При покупке краски изучайте состав, в котором должно быть много связующих элементов — от их концентрации зависит длительность срока службы. Зато наполнителей должно быть как можно меньше. Они не улучшают эксплуатационные качества, но увеличивают объем смеси.
  2. Выбирайте материал с уровнем влагопоглощения от 50 г/м2, чтобы предотвратить образование трещин, проникновение влаги и образование плесени.
  3. При покупке учитывайте расход краски на квадратный метр, указанный на этикетке. Чаще всего одного слоя недостаточно, поэтому необходимый объем увеличивайте в два раза.
  4. Для поверхности, которая постоянно подвержена ультрафиолетовому излучению, выбирайте силиконовый или акриловый состав.
  5. Краска бывает с глянцевой и с матовой поверхностью. Первый вариант привлекает своей яркостью и переливается на солнце. Недостаток краски — требовательность к идеально ровной основе, так как на ней проявляется любой недостаток оштукатуренной поверхности. Матовые составы помогают скрывать неровности на основе гораздо лучше.
  6. Выбирая основной цвет, учитывайте оттенок дверей, лестниц, фасадов и кровли.
  7. Учитывайте расположение здания. В холодном регионе используйте темный тон, притягивающий тепло и обеспечивающий дополнительное обогревание помещений. В жарком климате рациональнее выбирать светлые оттенки, отталкивающие тепло.
  8. При выборе материала в строительном магазине, дополнительно рассмотрите оттенок на улице при дневном свете, чтобы не получилось, что краска слишком светлая или темная.
  9. Если требуется провести работу при неблагоприятных климатических условиях, то используйте матовые или глянцевые органические составы акриловых красок, которые отличаются небольшим временем схватывания. Составы подходят для поверхности, на которой штукатурка изношена или непрочно держится.
  10. На водной основе акриловая краска хорошо ложится на штукатурку и отлично разбавляется после долгого хранения. Подходит для людей, которые привыкли регулярно обновлять внешний облик дома.
  11. При сомнении в выборе цвета приобретите одну банку и нанесите краску на незаметном месте.
  12. Используя краскопульт для нанесения состава, получите ровный слой с небольшой гранулировкой. При покраске валиками структура будет более выраженной.
  13. На фасад наносите краску минимум в два слоя. Участок окрашивайте полностью, не делая значительные временные перерывы, иначе стыки и полосы будут заметны.

Если не предъявляете особые требования к отделке фасада, то с точки зрения цены и качества оптимальный вариант — это акриловая и силиконовая краска.

Все виды составов требовательны к условиям проведения работ. Оптимальная температура для покраски не должна быть менее +10° и более +25°С. Прежде чем начинать работу, ознакомьтесь с прогнозом погоды, так как сильный ветер и осадки портят подготовку поверхности, негативно сказываются на краске в процессе высыхания. Отдавайте предпочтение быстросохнущему составу, так как каждый дополнительный час увеличивает риски попадания лишней пыли и влаги на поверхность, ухудшает внешний вид.

У каждой разновидности краски и штукатурки существуют свои особенности технологии нанесения и состава. Помните, что совместимость составов различного типа неодинакова. Силиконовые и акриловые краски ложатся друг на друга хорошо без использования дополнительной грунтовки. Зато водоэмульсионные составы растворяют силикатные.


ИСТОЧНИК ФОТО: https://buildmile.ru

Подписывайтесь на нас:

Опыт одновременного строительства подземной и надземной частей здания методом up-doun


14.07.2020 09:54

В условиях плотной городской застройки, а также дефицита свободных участков подземное строительство приобретает особую актуальность, однако местная специфика и гидрогеологические условия делают задачу возведения подземных объектов очень непростой. Это стимулирует инженеров использовать новые методы, которые обеспечивают безопасную эксплуатацию окружающей застройки, позволяют проводить подземные работы практически на любой глубине даже в самых сложных инженерных и геологических условиях. Одним из таких является метод up-down, или «вверх-вниз». Такой способ позволяет на нулевой отметке выполнить перекрытие и продолжить строительство одновременно как вверх, так и вниз. Данная технология является актуальной в современных условиях строительства, так как позволяет возводить здания с меньшим задействованием близлежащих территорий. В статье описан принцип технологии up-down, представлен порядок производства работ, рассмотрены основные преимущества и недостатки данного метода, приведены результаты геотехнического мониторинга окружающей застройки.


Основной областью применения метода up-down является устройство глубоких котлованов в пределах плотной городской застройки. Обычно этот метод используется при невозможности выполнения грунтовых анкеров вследствие стесненных условий и существующей развитой подземной части на соседних участках [1–7]. Кроме того, этот метод используется при малых допустимых деформациях окружающих зданий и сооружений. Явным преимуществом метода up-down является высокий темп строительства при устройстве высотной части (рис. 1).

схема

Рис. 1. Схема производства работ по методу up-down

При многих преимуществах этого метода строительства он в большинстве случаев ведет к удорожанию строительного производства по сравнению со строительством в открытом котловане. Особую сложность представляет собой организация снабжения и логистики при подобном виде работ [8]. Следует отметить, что устройство подземной части по методу «вверх-вниз» требует высокой квалификации подрядчика и детальной проектной проработки [9].

Для производства работ по устройству подземной части при данном методе строительства используется технологии «стена в грунте» и струйная цементация грунта (Jet-grouting). Проектирование конфигурации стены выполняется с учетом особенностей технологического оборудования (гидрофрезы). В ходе подготовительных работ по контуру будущей ограждающей конструкции выполняется форшахта шириной 60…80 см и глубиной до 3,0 м. Стенки форшахты раскрепляются железобетонными монолитными конструкциями.

Разработка грунта в траншее и бетонирование выполняются под защитой глиняного тиксотропного раствора, приготовляемого из бентонитовой глины, что обеспечивает устойчивость стенок траншеи от обрушения. Параметры раствора корректируются при производстве работ на опытном участке.

Укладка бетонной смеси панелей ограждающей конструкции производится методом вертикального подъема трубы. Бетонирование стен под защитой глиняного раствора должно выполняться не позднее чем через 8 часов после образования траншеи в захватке. Бетонирование одной захватки проводится непрерывно на всю высоту. Между захватками выполняется холодный рабочий шов, а армирование захватки — сборными пространственными арматурными каркасами. Глубина ограждающей конструкции по данной технологии может достигать 25…30 м.

По грунтовым условиям «стена в грунте» может применяться в любых дисперсных грунтах.

При устройстве больших котлованов, внутри которых возводится здание или сооружение, ограждающие конструкции, выполненные методом «стена в грунте», используют как внешние стены подземной части. В этом случае нагрузка от здания передается на фундаменты, не связанные с ограждающими стенами.

При необходимости ограждающие конструкции, устраиваемые методом «стена в грунте», могут выполнять двойную функцию: являются и ограждением котлована, и конструктивным элементом.

Современные технологии позволяют устраивать конструкции подземных сооружений разных форм, но традиционные и наиболее часто встречающиеся — конструкции из прямолинейных стенок.

При наличии грунтов, содержащих твердые включения природного или техногенного происхождения (крупные валуны, обломки бетонных конструкций, каменной кладки и др.), при проходке траншеи используется техника, оснащенная фрезерным оборудованием, например, фирм «Бауэр», «Касагранде».

Использование грейферного оборудования, которым крупные включения извлекаются, может привести к деформированию стенки траншеи, падению уровня тиксотропного раствора и деформациям окружающего массива и близ расположенных зданий.

Для надежного уплотнения проблемных стыков между панелями траншейных стен, как показал опыт строительства, успешно может быть применена технология струйной цементации jet-grouting. Она заключается в разрушении и перемешивании грунта мощнонапорной струей цементного раствора, исходящего под высоким давлением из монитора, расположенного на нижнем конце буровой колонны. В результате в грунтовом массиве формируются сваи диаметром 0,6–1,5 м из нового материала — грунтобетона с достаточно высокими несущими и противофильтрационными характеристиками. При этом цементационные работы могут выполняться как снаружи ограждающих котлован стен, так и изнутри котлована до его разработки. С этой целью в зависимости от прогнозируемой величины раскрытия стыков с глубиной могут быть применены неармируемые или армируемые металлическими трубами грунтоцементные колонны диаметром 60 или 80 см.

Для разработки грунтового ядра внутри подземного сооружения, возводимого способом «стена в грунте», рекомендуется применять технологию, которая предусматривает разработку вначале центральной части грунтового массива на глубину одного яруса с сохранением по периферии нетронутых участков. Такой прием облегчает работу ограждающей конструкции. Затем монтируются распорные конструкции, и разрабатывается оставшаяся часть грунта. Одним из существенных преимуществ данных технологий является возможность устройства как отдельных, так и протяженных подземных конструкций с поверхности земли без экскавации котлована [10].

Производство работ по методу up-down считается одним из самых сложных видов строительного производства с геотехнической точки зрения и предусматривает комплексную программу мониторинга в период строительства здания [11].

  1. Характеристика объекта строительства

Рассматриваемая площадка строительства обладает практически всеми перечисленными осложняющими факторами:

Инженерно-геологические и гидрогеологические условия.

В геологическом строении площадки принимают участие следующие элементы (рис. 2): ИГЭ-1. Современные техногенные отложения, песчано-суглинистые грунты со щебнем кирпича. ИГЭ-2. Глина мягкопластичной консистенции. ИГЭ-3. Суглинки мягкопластичной и тугопластичной консистенции. ИГЭ-4. Супеси пластичные. ИГЭ-5. Пески пылеватые, средней плотности, водонасыщенные. ИГЭ-6. Пески мелкие, средней плотности, водонасыщенные. ИГЭ-7. Пески средней крупности, средней плотности, водонасыщенные. ИГЭ-8.1. Глина полутвердая. ИГЭ-8. Мергель малопрочный. ИГЭ-9.1. Известняк, разрушенный до щебня и дресвы. ИГЭ-9. Известняк малопрочный. ИГЭ-10. Глина полутвердая.

Подземная вода встречена на глубине 3,7…4,0 м от поверхности.

В представленных инженерно-геологических условиях, при наличии в основании значительной толщи слабых грунтов и высоком уровне грунтовых вод, основным требованием к ограждающей конструкции котлована является обеспечение минимального поступления воды в котлован и ограничение дополнительных вертикальных перемещений окружающей застройки. Для определения зданий и сооружений, на которые возможно влияние от строительства проектируемого, предварительно назначается 30-метровая зона, которая впоследствии уточняется расчетами. Выполняется обследование зданий, определяется история их строительства, техническое состояние основных конструктивных элементов. Величина допустимого влияния определяется исходя из условия обеспечения надежности здания и зависит от его технического состояния и конструктивной схемы.

 схема площадки

Рис. 2. Инженерно-геологический разрез площадки строительства

Градостроительная и геотехническая ситуация.

Строящееся здание возводится в существующем квартале исторической застройки на месте демонтированного здания. При этом по градостроительным условиям было необходимо сохранить исторический фасад здания, выходящий на улицу. В зону влияния строительства попадают 15 зданий, техническое состояние зданий по результатам обследования оценено как удовлетворительное, предельные дополнительные осадки этих зданий ограничены диапазоном 10…30 мм. Для обеспечения сохранности и механической безопасности зданий при производстве работ по строительству здания и в ходе его эксплуатации необходимо было выполнить комплекс работ по улучшению механических свойств грунтовых оснований (метод компенсационного нагнетания цементного раствора) и усилению конструкции фундаментов. На всех этапах производства работ был организован мониторинг за развитием вертикальных перемещений и техническим состоянием основных конструкций зданий. Схема расположения наблюдательных марок приведена на рис. 3.

Схема размещения наблюдательных марок (вертикальные перемещения)

 Рис. 3. Схема размещения наблюдательных марок (вертикальные перемещения)

Характеристика строящегося здания.

Здание монолитное, железобетонное, с максимальной отметкой верха 34,10 м, прямоугольной формы в плане, состоящее из 6-этажной надземной части и 3-этажной подземной части (гаража). Несущие конструкции — продольные и поперечные монолитные железобетонные стены и колонны. Максимальная глубина котлована 12,60 м. Способ разработки котлована up-down: заглубление под защитой дисков плит перекрытий с возможностью одновременного строительства вверх. Конструкция ограждения котлована: траншейная стена толщиной 640 мм, выполняемая гидрофрезерным оборудованием (базовая машина BAUER BG-28 с гидрофрезой BC-32). Фундамент — свайное поле со сваями-бареттами, опирающимися на однородный скальный грунт (известняки). Вся эксплуатационная нагрузка передается на сваи, железобетонная плита подстилающего слоя толщиной 250 мм не связывается со сваями.

2. Последовательность выполнения работ

Производство работ по устройству подземной части здания выполнялось в следующей последовательности:

Этап 1. Выполнение компенсационного нагнетания цементного раствора в грунтовое основание фундаментов зданий окружающей застройки. Усиление конструкции фундаментов зданий окружающей застройки. Устройство буроинъекционых свай в основании фундаментов сохраняемой части фасада (рис. 4).

Рис. 4. Схема выполнения работ по усилению грунтового основания фундаментов существующих зданий

Рис. 4. Схема выполнения работ по усилению грунтового основания фундаментов существующих зданий

Усиленный таким образом грунтовый массив является новым техногенным образованием, обладающим высокой степенью жесткости. Методика уплотнения позволяет уплотнять не только дисперсные связанные грунты (глины, суглинки, супеси), но и несвязанные дисперсные грунты (пески, насыпные техногенные грунты). Расширение возможностей применения технологии на широком спектре грунтов происходит за счет подбора качественной характеристики раствора, обеспечивающей ее высокую проникающую способность. Наличие грунтовых вод не является противопоказанием к применению высоконапорной инъекции.

Этап 2 (рис. 5). Выполнение форшахт для устройства ограждения по периметру подземной части здания и для выполнения свай-баретт. Производство работ по устройству монолитной железобетонной плиты рабочего уровня с направляющими гильзами для устройства скважин цементации. Бурение скважин и цементация скального грунта. После цементации вдоль периметра ограждения котлована образуется слой скального грунта с достаточными противофильтрационными свойствами для разработки вертикальных траншей

Рис. 5. Этапы устройства форшахт ограждения по периметру и баретт, цементации основания и бетонирования плиты рабочего уровня

Рис. 5. Этапы устройства форшахт ограждения по периметру и баретт, цементации основания и бетонирования плиты рабочего уровня

Рис. 6. Этапы устройства ограждающей конструкции, свай-баретт и экскавации котлована

под защитой бентонитового раствора. Водопроницаемость зацементированных грунтов контролируется по величине удельного водопоглощения, установленного при гидравлическом опробовании контрольных скважин. В основании баретт формируется непрерывный пласт сплошного зацементированного скального массива с нормативным пределом прочности на одноосное сжатие — R_с≥11,0 МПа. Для контроля прочности выполняется отбор образцов и их лабораторные испытания.

Этап 3 (рис. 6). Устройство траншейной стены ограждения подземной части методом «стена в грунте» гидрофрезерным оборудованием (единичная заходка — 2800 х 640 мм) в две очереди по захваткам с заведением в водоупор (ИГЭ-10) не менее чем на один метр. Устройство замыкающих грунтобетонных элементов, выполняемых по технологии струйной цементации грунта (Jet-1), между криволинейными захватками с заведением до отметки кровли скального грунта (ИГЭ-8).

Этап 4. Устройство баретт (2800 х 640 мм) с «сердечниками» под временные и постоянные железобетонные и стальные колонны и баретт под башенный кран по технологии «стена в грунте».

Этап 5. Демонтаж форшахт и железобетонной плиты рабочего уровня. Устройство фундамента башенного крана. Срубка шламового бетона верхней части ограждения котлована на высоту 500 мм. Устройство обвязочной балки и периферийной части плиты перекрытия на отметке (-0.100) по инвентарной опалубке.

Этап 6. Поэтапная экскавация котлована до отметки -4,550 м. Демонтаж временных колонн.

Этап 7. Устройство монолитной железобетонной плиты перекрытия на отметке (-4.550) по бетонной подготовке. Устройство вертикальных несущих конструкций минус первого этажа.

Этап 8. Устройство центральной части плиты перекрытия с технологическими проемами на отметке (-0.100). Эта конструкция позволяет вести работы по устройству надземной части здания, поскольку опирается на ранее выполненные сваи баретты и не требует устройства фундаментной плиты на минус третьем уровне. Начало строительства надземной части здания без ограничения скорости производства работ и этажности.

Этап 9. Разработка грунта котлована малогабаритной техникой до отметки -8.500. Устройство монолитной железобетонной плиты перекрытия минус второго этажа на отметке -8.200.

Этап 10. Разработка грунта котлована малогабаритной техникой до отметки -12,600 м. Срубка и оформление оголовков баретт. Устройство дренажной системы по дну котлована. Устройство монолитной железобетонной плиты пола минус третьего этажа.

Этап 11. Устройство вертикальных несущих конструкций минус третьего этажа.

Этап 12. Завершение работ по устройству монолитной железобетонной плиты минус второго этажа. Устройство пандусов и лестничных маршей. Устройство внутренней вертикальной гидроизоляции и прижимной монолитной железобетонной стенки на минус третьем этаже. Для устройства монолитной прижимной стенки в перекрытиях были предусмотрены технологические гильзы-направляющие.

Этап 13. Устройство вертикальных несущих конструкций минус второго этажа. Устройство внутренней вертикальной гидроизоляции и прижимной монолитной железобетонной стенки на минус втором этаже.

Этап 14. Ликвидация временного технологического проема в железобетонной плите на отметке -0.100. Демонтаж временных колонн.

Этап 15. Демонтаж башенного крана. Демонтаж ростверка и баретт башенного крана. Устройство внутренней вертикальной гидроизоляции и прижимной монолитной железобетонной стенки на минус первом этаже. Устройство наружной вертикальной гидроизоляции стилобатной части здания и благоустройство территории.

3. Геотехнический мониторинг

В ходе геотехнического мониторинга выполнялись высокоточные геодезические измерения отметок установленных деформационных марок, оценивалась динамика развития вертикальных перемещений зданий и проводилась визуальная оценка их технического состояния. Динамика развития наиболее интенсивных вертикальных перемещений показана на рис. 7. Вертикальные перемещения остальных марок имеют меньшие значения. Относительная разница дополнительных осадок фундаментов существующих зданий также не превысила предельно допустимого уровня.

 Рис. 7. Динамика развития вертикальных перемещений деформационных марок

Рис. 7. Динамика развития вертикальных перемещений деформационных марок

О стабилизации осадок зданий окружающей застройки можно судить по изменению скорости их развития, а она имеет явную тенденцию к снижению. Это можно хорошо проследить на графике построенных по данным наблюдений. Если в начальный период наблюдения она составляла 0,1…0,15 мм/сут, то через 90 суток она составила 0,03…0,45 мм/сут, следовательно, снизилась в 2,5 …3,0 раза. Такое снижение скорости развития абсолютной величины вертикальных перемещений свидетельствует о процессе их стабилизации.

Заключение

Выбор метода производства работ up-down по устройству здания в стесненных городских условиях оказался полностью оправданным. Использованные при реализации этого метода технологии позволили выполнить работы в установленные сроки, с качеством обеспечивающим механическую безопасность как строящегося объекта, так и окружающей застройки. Производство работ хотя и является технически сложным, но при надлежащем уровне мониторинга позволяет оптимизировать сроки проведения работ. Полученный в ходе строительства опыт может быть в дальнейшем использован при проектировании и строительстве объектов такого уровня сложности.

Литература

1. Абелев М. Ю. Особенности технологии проведения работ по устройству фундаментов: Учеб. пособие / М. Ю. Абелев, Б. М. Красновский. М.: Б. и., 1980. — 45 с.

2. Абелев М. Ю. Деформации сооружений в сложных инженерно-геологических условиях. М.: ЦМИПКС при МИСИ им. В. В. Куйбышева, 1982. — 290 c.

3. Строительство зданий и сооружений в сложных грунтовых условиях / [М. Ю. Абелев, В. А. Ильичев, С. Б. Ухов и др.]; под ред. М. Ю. Абелева. М.: Стройиздат, 1986. — 104 с.

4. Абелев М. Ю., Чунюк Д. Ю, Бровко Е. И. Выправление кренов высотных промышленных и гражданских зданий // Промышленное и гражданское строительство. 2016. — № 11. — С. 54–59.

5. Катценбах Р., Шмитт А., Рамм Х. Основные принципы проектирования и мониторинга высотных зданий Франкфурта-на-Майне. Случаи из практики // Реконструкция городов и геотехническое строительство. 2005. № 9. C. 80–99.

6. Конюхов Д. С. Строительство городских подземных сооружений мелкого заложения. М.: Архитектура, 2005. — 298 с.

7. Chang-Yu Ou. Deep Excavations. Theory and Practice. London: Taylor & Francis, 2006. — 532 p.

8. Щерба В. Г., Абелев К. М., Храмов Д. В., Сагалаков Г. В., Бахронов Р. Р. Особенности обеспечения объектов строительства монолитных многоэтажных зданий в стесненных городских условиях. //Вестник МГСУ. — 2008. — № 3. С. 146–149.

9. Юркевич П. Б. Возведение монолитных железобетонных перекрытий при полузакрытом способе строительства подземных сооружений //Подземное пространство мира. — 2002. — № 1. — С. 13–22.

10. Makovetskiy O., Zuev S. Practice device artificial improvement basis of soil technologies jet grouting. Procedia Engineering. — 2016. — Vol. 165: 15th Intern. sci. conf. Underground Urbanisation as a Prerequisite for Sustainable Development 12–15 Sept. 2016, St. Petersburg, Russia. — P. 504–509.

11. Маковецкий О. А. Зуев С. С. Опыт проведения испытаний баретты большой длины в условиях плотной городской застройки // Жилищное строительство. 2018. — № 9 —С. 13–18.

Авторы статьи: 

М. Ю. АБЕЛЕВ, С. С. ЗУЕВ , Р. Р. АХМЕТШИН

Центр инновационных технологий в строительстве Института ДПО ГАСИС НИУ ВЩЭ
АО «Нью Граунд»

 

 

 



Подписывайтесь на нас:

Игорь Мурашов: строительные машины и оборудование XCMG являются воплощением современных высоких технологий и качества


29.06.2020 23:07

Специализированная техника китайского концерна XCMG активно завоевывает российский рынок. Машины и оборудование данного бренда все чаще задействуются на строительных объектах нашей страны. Об особенностях производимых концерном машин, предназначенных для строительства фундаментов и подземных сооружений, рассказал порталу ASNinfo.ru Игорь Мурашов, специалист по буровым установкам компании «СюйГун Ру», являющейся официальным дистрибьютором XCMG в России.


Расскажите поподробнее о деятельности концерна XCMG. Какие достижения можете отметить?

Концерн XCMG ( Xuzhou Construction Machinery Group) был основан в 1989 году в китайском городе Сюйчжоу. За сравнительно короткое время он стал одним из мировых лидеров по производству дорожно-строительной техники. Наша компания ООО «СюйГун Ру» является официальным дистрибьютором XCMG в России, осуществляет поставки большинства видов спецтехники концерна, а также запасных частей.

Приведу несколько показательных цифр. В настоящее время XCMG занимает 4-ое место в мире среди 50-ти крупнейших производителей строительной техники (согласно ежегодному международному рейтингу журнала «Желтая таблица 2020»). Продукция концерна экспортируется более чем в 130 стран мира. Техника, выпускаемая под маркой XCMG, производятся в тесном сотрудничестве с самыми известными мировыми производителями, такими как Liebherr, ThyssenKrupp, Caterpillar. Компании принадлежит контрольный пакет акций компании Schwing - второго по величине производителя бетононасосов в Германии, также немецкой Fluitronics и AMCA Hydraulics  из Нидерландов. Численность персонала XCMG - более 26 тыс. человек.

Добавлю, что более 200 млн долларов концерн инвестировал в строительство производственной площадки в Бразилии, 50 млн евро - в строительство нового исследовательского центра в Krefeld's Europark Fichtenhain в Германии. Создана перспективная производственная площадка в Польше. В самый ближайший период  планируется открыть 12 заводов XCMG за пределами КНР, а также создать 8 региональных центров продаж по всему миру. Можно с уверенностью сказать, что строительные машины и оборудование, производящиеся под брендом XCMG уже давно узнаваемы и являются воплощением современных высоких технологий и качества.

А можете привести данные по производству буровых установок и спецтехники для строительства фундаментов и подземных сооружений?

Подразделение компании по выпуску машин для выполнения фундаментных и специальных подземных работ называется Xugong Foundation Construction Machinery Co., Ltd. Оно было образовано в январе 2010 года. Площадь предприятия занимает около 100 тыс. кв. м, из них 30 тыс. кв. м - производственные корпуса. Штат сотрудников насчитывает всего около тысячи человек, но современные технологический процесс позволяет выпускать около 1100 единиц машин в год.

На текущий момент завод выпускает роторные буровые установки, анкерные буровые установки, установки горизонтально-направленного бурения, проходческие щиты для микротоннелирования, горнопроходческие комбайны, машины для выполнения работ по технологии «стена в грунте» с грейферным навесным оборудованием или гидрофрезой.

Какие модели сейчас производятся в данном сегменте? Какие их  ключевые характеристики можно выделить?

В настоящее время роторные буровые установки XCMG выпускаются под серией XR, крутящий момент вращения ротора которых составляет от 80 кН/м до 793 кН/м. Они способны выполнять работы по различным технологиям: бурение при помощи телескопической штанги келли, CFA (непрерывный шнек), метод раскатки грунта, DTH (пневмоударник). Наш завод буровых машин также может похвастаться тем, что гигантская буровая установка - XR800E - была спроектирована и построена именно на нем. Эта уникальная машина весом в 320 тонн способная бурить диаметром до 4600 мм. Линейка установок «Стена в грунте» серии XG с подъемным усилием 500 - 700 кН с помощью двух синхронно работающих лебедок, расположенных в задней части машины, может сооружать траншеи шириной от 300 до 1500 мм на глубину до 105 м. При этом, по сравнению с классическим тросовым грейфером, его гидравлический собрат обеспечивает более точное копание, с возможностью изменения положения грейфера в траншеи при помощи специальных лап на гидроцилиндрах, которыми можно отталкиваться от стен, тем самым меняя положение грейфера в траншее. Гидравлические фрезы XCMG зарекомендовали себя как высокотехнологичный, точный и производительный инструмент для разработки траншеи «стена в грунте» в твердых и скальных породах. Ширина траншеи может быть от 800 до 1500 мм, а глубина может достигать 85 метров.

Стоит еще упомянуть о популярном в последние годы в России классе многофункциональных машин для укрепления и стабилизации грунтов по таким технологиям, как Jet grouting, анкерное крепление, микросваи и бурение с пневмоударником. В этом сегменте завод представил свою модель XMZ120, способную создать достойную конкуренцию европейским производителям машин подобного класса.

Владельцы и операторы буровых машин XCMG в России уже положительно оценили плавную и информативную работу гидравлики, систему автоматической смазки шарнирных соединений и, как следствие, более легкое и простое ежесменное техническое обслуживание, а также лебедку с намоткой каната в один слой, что позволяет продлить срок службы дорогостоящих стальных канатов на машине.

В качестве производителей комплектующих для буровых машин XCMG были выбраны компании - мировые лидеры по производству компонентов для специальной техники. Это такие всемирно известные бренды, как Cummins, Rexroth, Bonfiglioli, Freudenberg, Hella, Pfeifer, Eaton, FAG и др. Всё вышеперечисленное, в комплексе с высокими стандартами качества XCMG, дает на выходе надежную и сбалансированную по техническим параметрам машину.

Можно ли говорить о глубокой цифровизации продукции XCMG?

Это действительно так. Всем известно, что Китай является лидером в производстве электронных высокотехнологичных систем, которые используются в нашей повседневной жизни, и буровые XCMG так же не остались обделенными высокотехнологичными системами. Так, управление в машинах осуществляется с помощью технологии интеллектуального управления контроллером с CAN шиной, что позволило упростить интерфейс управления и вывести все данные, за которыми должен следить оператор буровой установки во время работы, на один компактный дисплей. Раньше же приходилось следить за множеством достаточно крупногабаритных аналоговых приборов. За всеми неисправностями в работе машины можно также наблюдать в соответствующем меню, быстро находя и понимая, какой датчик или какая система вышли из строя или дали сбой. Ещё одной особенностью китайских машин XCMG является наличие ярких светодиодных фонарей для освещения рабочей зоны. Для слепой зоны сзади и главной лебедки предусмотрены инфракрасные камеры с высоким разрешением, которые, в отличие от традиционных зеркал, обеспечивают хороший обзор в любое время суток и в любую погоду.

Растет ли спрос на буровые установки XCMG в России?

Сейчас буровые установки марки XCMG активно завоевывают российский рынок и доверие наших строителей к китайской строительной технике. География поставок включает в себя многие города России, расположенные в различных климатических зонах и имеющие свои особенности геологических слоев грунта. Роторные буровые установки были проверены в переменчивом климате Приморского края. в Мурманской области им приходилось бурить попадающиеся на разной глубине большие валуны В суровых морозах Сибири и Крайнего Севера они сохраняли возможность работы вплоть до температуры  -40°С. В Москве грейферными установками «стена в грунте» строятся станции метро: «Аминьевское шоссе», «Мичуринский проспект», «Проспект Вернадского», «Славянский мир».

Мы признательны тем людям и компаниям в России, которые оказали нам глубокое доверие и остановили свой выбор на марке XCMG, и надеемся, что другие строители, которые ищут новые машины для своих амбициозных проектов, также выберут XCMG в качестве долгосрочного надежного партнера!

МАТЕРИАЛЫ ПО ТЕМЕ:

Рациональность и эффективность. При строительстве подземных сооружений все активнее применяется технология «стена в грунте»


ИСТОЧНИК ФОТО: Пресс-служба ООО «СюйГун Ру»

Подписывайтесь на нас: