Лабораторное сопровождение строительства


26.10.2021 06:53

Контроль качества строительных материалов и всех этапов возведения здания или сооружения является важной задачей, стоящей перед заказчиком объекта. В силу объективных обстоятельств провести самостоятельно разнообразные испытания и проверки на стройке не получится. Подобные услуги оказывают специалисты в аккредитованных центрах. Для работы используется оборудование, приборы, прошедшие метрологическую поверку. Для достоверности результатов важно соблюдать сроки поверки.


Под лабораторным сопровождением строительства подразумевают комплексные мероприятия, производимые на площадке строительства. В ходе работ эксперты определяют соответствие ГОСТ или СНиП конструкций, материалов, технологий, монтажных работ.

Итогом лабораторной работы становится документ, подтверждающий качество и безопасность выполненного объекта. Заключение оформляется на основе актов проведенных исследований и экспертиз.

Лабораторное сопровождение является обязательным для всех капитальных строительных объектов или при их реконструкции, а также при капремонте зданий или сооружений. Данная норма закреплена в Градостроительном кодексе РФ в статье 54. Подрядчик без проведения экспертиз на стройплощадке не сможет получить от надзорных органов заключение о соответствии. Следовательно, у него не получится ввести объект в эксплуатацию.

Классификация видов контроля

Для выполнения каждого из видов лабораторных работ по контролю за качеством строительства используют разные методы и приспособления.

Существует несколько классификаций методов контроля. По времени и месту проведения различают:

  • входной;
  • промежуточный;
  • геодезический;
  • приемочный;
  • инспекционный контроли.

По объему проверки могут быть: разовые, выборочные или сплошные. По периодичности исследований выделяют постоянные и непостоянные проверки. По применению средств контроля выделяют:

  • визуальный осмотр;
  • лабораторные испытания;
  • проверку с использованием инструментов;
  • регистрационный контроль;
  • техническую проверку.

Какой вид проверки необходим в каждом конкретном случае, регламентируется нормативно-правовыми актами и российским законодательством.

Этапы лабораторного сопровождения

Строительство зданий и сооружений — это сложный, многоступенчатый, технологичный процесс. Все начинается с подготовки проекта, выбора земельного участка. Далее следует заливка фундамента, возведение стен, перекрытий, кровли, разводки коммуникаций. Для получения качественного результата строительства важно, чтобы лабораторный контроль осуществлялся в полной мере на каждом этапе.

В ходе работы специалистам аккредитованного центра сопровождения строительства предстоит проверить:

  • свойства, характеристики и качество стройматериалов;
  • качество конструкций и их элементов;
  • правильность выполнения работ и соблюдение технологий.

Исследованию подвергается не только само здание, но и земельный участок, на котором оно расположено.

Эксперты выделяют 3 этапа лабораторного сопровождения строительства:

  • входной контроль;
  • текущий или операционный контроль;
  • приемка.

Каждый из видов контроля решает свои задачи, обладает определенным набором методов для исследования.

Входной контроль

На этом этапе специалисты определяют качество материалов, которые поступают на строительную площадку. Изучению подвергаются также изделия, необходимые для возведения зданий.

Регламент проведения входного контроля описан в законодательных актах:

  • градостроительный кодекс, статья №52;
  • технический регламент о безопасности зданий, статьи № 38 и 34;
  • постановление правительства №468.

Работа экспертов заключается в том, чтобы сверить информацию в сопроводительных документах с теми свойствами и характеристиками, которые реально присутствуют у стройматериала. Продукция, прошедшая проверку, отмечается в специальном журнале.

  1. Для определения соответствия используют визуальный осмотр, измерительные приборы.
  2. Оценивают механические, физические, химические и прочие свойства.
  3. Выявляют дефекты, появившиеся в результате транспортировки.

Работы проводятся как в лаборатории, так и на строительной площадке. Под пристальное внимание эксперта попадают каркасные и опорные материалы, бетон различных марок.

Основные разновидности входного контроля:

  • сплошной — проверка всего поступающего материала;
  • выборочный — один экземпляр из партии товара;
  • непрерывный — проверяют всю продукцию, пока не наберется нужное количество материала, соответствующего безопасности.

При неудовлетворительном качестве продукции возможен ее возврат поставщику на основании заключения эксперта лаборатории сопровождения строительства.

Данный вид контроля снижает вероятность последующих переделок, демонтажа из-за использования некачественного продукции. На этом этапе происходит существенное уменьшение риска возникновения аварийного обрушения конструкции.

Входной контроль осуществляется постоянно, при завозе на площадку новой партии материалов. Специалисты отбирают для проб столько продукции, сколько им необходимо для тщательной проверки.

Непрерывность исследования объясняется тем, что часто возникают ситуации с недобросовестными поставщиками. Например, в начале строительства отгружают материалы высокого качества, соответствующие всем нормам. После нескольких поставок продукция теряет в качестве и, если этого вовремя не заметить, то последствия могут быть непредсказуемы.

Входной контроль стройматериалов
Входной контроль стройматериалов
Источник: https://apollo-zmk.ru

Текущий контроль

Текущий контроль заключается в проверке и приеме строительно-монтажных работ. Специалисты оценивают состояние готовых конструкций здания. При необходимости берутся пробы для экспертизы.

Заключение экспертов помогает скорректировать строительный процесс при необходимости. Такой подход снижает затраты подрядчика и заказчика на последующие исправления в ходе возведения объекта.

Для определения свойств и характеристик используются специальные приборы, приспособления. Например, плотномер или режущее кольцо.

При выявлении несоответствия показателей нормам подрядчиком проводятся работы по исправлению. После таких работ снова проводится лабораторная проверка экспертом. Процесс продолжается до того момента, пока не будут достигнуты необходимые критерии.

Компания, занимающаяся оценкой качества строительства, должна контролировать косвенные факторы, которые могут привести к некачественному результату работы подрядчика. Например, для укладки насыпи требуется определенная плотность слоев грунта. Эксперту лучше проконтролировать влажность земли перед процессом утрамбовки, так как этот критерий имеет определяющее значение.

Текущий контроль проводится не разрушающими конструкцию методами. Таким образом можно оценить качество бетона в фундаменте. Для этого используют:

  • ультразвуковой прибор;
  • молотки Шмидта;
  • метод ударного импульса и прочие варианты.

Часть материалов испытывают в условиях лаборатории, подвергая их всевозможным нагрузками.

Плотнометр
Плотнометр
Источник: https://lenhart.su

Приемочный контроль

Проводится при завершении строительных работ. На этом этапе проверяют, насколько построенное сооружение соответствует:

  • заявленной на этапе планировки документации;
  • нормам ГОСТ, СНиП и санитарным правилам.

Итогом проверочного контроля является документ о пригодности или непригодности объекта строительства. Подрядчик предъявляет бумагу заказчику работ. Заключение о невозможности использовать здание по назначению является основанием для отказа заказчика от оплаты работы подрядчика.

При соблюдении предыдущих этапов лабораторного сопровождения вероятность получения негативного заключения в ходе приемочного контроля практически равна нулю.

Перечень работ, входящих в лабораторное сопровождение

Разные инфраструктурные объекты требуют проведения различных видов лабораторных работ. Например, перечень исследований при строительстве зданий и возведении автомобильной эстакады будет отличаться. Поэтому лабораторное сопровождение включает в себя те работы, которые затребованы заказчиком.

Список исследований, проводимых экспертами:

  • полевые и геодезические работы;
  • изучение документации, проекта, нормативной базы;
  • определение состава строительных смесей;
  • проверка характеристик арматурных соединений;
  • контроль прочности стен, перекрытий;
  • исследование изъятых со стройки образцов в лабораторных условиях;
  • определение влажности, прочности, разнообразных коэффициентов материалов, конструкций.

Анализу подвергается бетон, щебень, песок, грунт, сварка, кирпич, арматура, железные конструкции и прочие материалы, используемые в строительстве.

Геодезические работы
Геодезические работы
Источник: https://realty.ria.ru

Неразрушающие методы контроля

В эту группу относятся те методы, которые не требуют проведения демонтажа или разборки изделия, конструкции. Проще говоря, проверка проводится без нарушения целостности, появления дефектов.

Неразрушающие методы позволяют проверить важные характеристики, обеспечивающие безопасную эксплуатацию здания или сооружения:

  1. Позволяет определить фактические характеристики. Сюда относятся однородность, плотность, толщина и другие варианты. Так проверяют швы или наружное покрытие, включая качество краски.
  2. Прочность стыковочных соединений, например, в сварных швах, при пайке или резьбе.
  3. На этапе строительства можно определить наличие трещин, грибка, коррозии и прочих внутренних дефектов.

При обнаружении какого-либо несоответствия решается вопрос, насколько опасен дефект, и как избежать его дальнейшего распространения.

Акустический метод

Самый распространенный и простой в применении вариант исследования. Подходит для проверки качества сварных швов, доступен для обследования на большом количестве материалов.

Принцип работы основан на определении свойств предмета исследования при регистрации скорости прохождения ультразвука сквозь него. Оператор с помощью специального оборудования может выявить глубинные дефекты: например, расслоения или трещины.

Работы проводятся дефектоскопами разных видов. Приборы в короткий срок определяют качество детали и выдают результат на экране. Дефектоскопы имеют небольшие размеры, поэтому оператор может перемещаться между строительными объектами без проблем. Интерпретировать результат может только сотрудник, обладающий соответствующей квалификацией.

Акустический метод контроля
Акустический метод контроля
Источник: https://veka-slide.ru/

Магнитный контроль

В основе этого вида контроля лежит взаимодействие между интересующим объектом и магнитным полем. При наличии пустот внутри объекта магнитные волны ее огибают. Так приборы регистрируют магнитные поля над дефектами. Подходит для анализа изделий из железа, кобальта, никеля или продукции на основе их сплава.

Один из вариантов магнитной проверки — это нанесение на предмет исследования специальной суспензии. Недостаток в том, что с помощью порошка можно определить дефекты неглубокого залегания, максимум до 3 мм от поверхности.

Магнитный контроль
Магнитный контроль
Источник: https://dikonlab.ru

Использование рентгеновских лучей

Способность рентгеновских лучей проникать сквозь любые поверхности легла в основу этого метода неразрушающего контроля. С одной стороны исследуемого объекта натягивают или устанавливают пленку, не пропускающую лучи рентгена. С другой стороны воздействуют излучением на предмет. Прибор фиксирует расположение лучей — картинка подвергается анализу специалистами. Более яркое свечение говорит о наличии дефектов внутри конструкции. Это объясняется низкой плотностью материала в месте дефекта.

Часто применяют рентгеновский метод для проверки качества сварных швов.

В результате проверки удается обнаружить нарушения в геометрии, наличие пор или посторонних включений, трещины или поры.

Недостаток метода заключается в том, что он не подходит для исследования сварных швов меньше стандартного размера. Также для работы необходимо использование мер предосторожности, так как рентгеновские лучи опасны для здоровья человека.

Радиографический неразрушающий контроль
Радиографический неразрушающий контроль
Источник: http://rskndt.com

Разрушающие методы контроля в строительстве

В данную группу относятся те методы исследований, которые показывают, при какой нагрузке на предмет наступает его разрушение. Проверка выполняется в лабораторных условиях на специальном оборудовании. В качестве образца выступает проба, взятая на строительном объекте.

Специалисты проводят следующие виды проверок:

  • динамические испытания в виде ударов разной силы для определения хрупкости или вязкости;
  • испытания на усталость предполагают не сильные, но многократные нагрузки на предмет до его разрушения;
  • испытания на твердость проводят с помощью алмазного наконечника, который показывает необходимую силу для разрушения предмета;
  • изнашивание или истирание проводят с помощью силы трения, воздействующей на материал или деталь.

В качестве примеров оборудования для разрушающих методов лабораторного сопровождения строительства можно назвать использование разрывных машин. Они способны сгибать металлические листы, скручивать проволоку. Достигаются такие результаты тем, что машина развивает усилие до 600 кН. Для определения твердости металла используют другие машины. Они носят название твердомеры.

Разрушающие методы контроля в строительстве
Разрушающие методы контроля в строительстве
Источник: https://profpribor.ru

Цена на услуги по сопровождению строительства

Стоимость услуги по лабораторному сопровождению строительных объектов зависит от различных факторов. Чем больше исследований предстоит выполнить, тем дороже придется заплатить заказчику. На формирование цены влияет также удаленность строительного объекта и даже время года. Исследования проводятся на протяжении всего периода строительства: следовательно, чем дольше длится процесс, тем больше будет оплата услуги.

Представители компании выезжают на объект строительства. Только после визуального осмотра, анализа менеджеры смогут назвать окончательную цену лабораторного сопровождения.

Оказанием услуг по лабораторному сопровождению строительства занимаются специалисты, имеющие высокую квалификацию и инженерное образование.

Все испытания и проверки проводятся в соответствии с требованием нормативных документов. На любой вид исследования оформляется соответствующий акт. На основании всех документов формируется итоговая документация.


ИСТОЧНИК ФОТО: http://www.gilds.ru

Подписывайтесь на нас:

Светопрозрачные конструкции становятся более технологичными


19.11.2019 11:30

По оценке экспертов, в настоящее время продолжает развитие тренд увеличения площади остекления зданий. При этом сами светопрозрачные конструкции становятся более технологичными и мультифункциональными.


Оконная индустрия за последнее десятилетие технологически существенно вырвалась вперед. Игроки рынка выпускают продукты, все более сложные конструктивно. Это касается и самого стекла, и оконного профиля. Благодаря новым возможностям архитектурно изменилось и само фасадное остекление. Его стало больше как в коммерческих объектах, так и в жилых зданиях.

Руководитель технического центра стратегического направления «Строительство» компании REHAU по Восточной Европе Антон Карявкин отмечает, что фасадное остекление зависит от объекта недвижимости, его архитектуры и т. д. Так, например, здания на территории МДЦ «Москва-Сити» оснащены по преимуществу витражными системами. Ультрасовременные дома, у которых стены полностью состоят из стекла (для наблюдателя с улицы), в основном собраны из алюминиевых, реже стальных профилей, которые видны только изнутри помещения. В объектах, находящихся в отдалении от центра, система будет проще. Как правило, в них нет структурного остекления. При этом они все равно оснащены большеразмерными алюминиевыми витражными конструкциями, однако алюминиевые накладки в них видны снаружи. Нечто подобное встречается и в современных премиальных жилых комплексах.

«Если говорить о более простых жилых и общественных объектах, в них чаще встречаются окна обычного формата, которые тоже можно назвать витражами. Но все равно тенденция такова, что широкоформатные оконные блоки, витражи, пользуются большей популярностью. В большинстве объектов массовой застройки такие блоки занимают примерно половину стены», – добавляет Антон Карявкин.

Игроки рынка также отмечают, что за последние несколько лет оконные профили стали более функциональными, удовлетворяющими запросам потребителей. Это касается как энергосбережения, звукоизоляции, так и других характеристик.

По словам руководителя отдела строительного консалтинга profine RUS Александра Артюшина, о существующих возможностях продуктов десять лет назад можно было только мечтать. Подавляющее большинство зданий имели стандартные оконные проемы и стандартные одно-, двух-, трехстворчатые оконные блоки, которые сейчас уже редко встречаются. Сегодня разработка новых технических решений, применение новых материалов, увеличение жесткости светопрозрачных конструкций из ПВХ позволяют не только расширить видение архитекторов, но и реализовать эти проекты, как в области массового строительства, так и при строительстве индивидуального жилья.

«Сейчас разработаны и применяются профильные системы с более широкими возможностями, например, при ширине порядка 1 м высота нормально функционирующих оконных створок может достигать 2,5 м. Новые профильные системы из ПВХ можно комбинировать и использовать совместно с фасадными системами из алюминия – путем установки специальных алюминиевых накладок. Это сохраняет неоспоримое преимущество по теплосбережению при меньшей стоимости по сравнению с алюминиевыми конструкциями», – отметил эксперт.

Мнение

Александр Круглов, продакт-менеджер департамента маркетинга Pilkington Glass Russia:

– За последние 10–15 лет фасадное остекление значительно трансформировалось. Если раньше оно было технологически более простым, то со временем ситуация изменилась. Во-первых, стекло – прекрасный архитектурный инструмент, позволяю­щий украсить фасад любого здания: проектировщики уходят от стандартного остекления, превращая фасады зданий в настоящие произведения искусства. Посмотрите, например, на торговый дом Publicis Drugstore в Париже или аэропорт «Платов» в Ростове-на-Дону – к слову, в обоих объектах стоит стекло Pilkington. А во-вторых, стеклянный фасад сегодня не просто защита от внешних факторов, это суперпрочный материал, способствующий энергосбережению. Специальное покрытие, которое наносится на стекло, позволяет решать множество задач: защищать от солнечного жара, сокращать расходы на кондиционирование и обогрев помещений. Энергоэффективные светопрозрачные конструкции обеспечивают максимальную степень комфорта для людей. Добавлю, что в настоящее время стекло Pilkington Glass Russia в плане энергоэффективности является одним из самых технологичных и востребовано как на отечественном, так и на международном рынке.


АВТОР: Артём Аладанов
ИСТОЧНИК: СЕ №34(895) от 18.11.2019
ИСТОЧНИК ФОТО: Pilkington Glass Russia

Подписывайтесь на нас:

Цифровые технологии в строительстве


19.11.2019 09:00

Цифровые технологии все активнее внедряются в проектирование и строительство. И это не только информационное моделирование, но и другие современные решения, упрощающие работу специалистов и делающие ее более эффективной.


В том, что трансформация строительной отрасли невозможна без внедрения передовых цифровых технологий, уверены как чиновники Минстроя, так и игроки рынка. Ряд решений уже используется, другие еще ждут своей очереди.

Правило хорошего тона

При упоминании «умных» технологий в проектировании и в строительстве в первую очередь все вспоминают BIM. Еще пять-семь лет назад для многих российских компаний информационное моделирование было практически неизвестно. Сейчас эту технологию в своей работе используют уже более половины всех крупных проектных организаций. Застройщики BIM применяют пока реже. Тем не менее, есть стойкая тенденция роста.

По мнению заведующего кафед­рой информационных технологий СПбГАСУ Алексея Семенова, использование BIM на стадии проектирования в ближайшие пять лет уже станет правилом хорошего тона. Все предпосылки для этого уже есть. Внедрение BIM на последую­щих стадиях, на его взгляд, займет больше времени. Здесь мы можем опираться на международный опыт внедрения BIM в строительную отрасль.

«В целом, если говорить о новых технологиях, в настоящий момент активно разрабатывается и дополняется программное обеспечение, в том числе и отечественное, для использования на стадиях строи­тельства и эксплуатации. Кроме того, для работы с информационными моделями зданий могут использоваться технологии 3D-сканирования, 3D-печати, виртуальной и дополненной реальности. Все это звучит как научная фантастика, но в отдельных организациях уже используется. Работа с этими технологиями приводит к необходимости формирования новых компетенций у выпускников вузов, к модернизации старых и открытию новых специальностей. В СПбГАСУ в этом направлении ведется активная работа. Поэтому, когда технологии получат широкое распространение, наши выпускники будут к этому готовы», – подчеркнул Алексей Семенов.

Многие проектные организации уже задействуют BIM, другие технологии – и сочетают их между собой. Как отмечают в компании «Ренейссанс Констракшн», специалисты в своей работе уже используют 4D-, 5D-проектирование, фотограмметрию и лазерное сканирование, а также технологии виртуальной и дополненной реальности. Причем и в облачных сервисах. Также туда уже уходят и платформы. Например, Autodesk делает фотограмметрию на облаке, там же происходит обработка моделей для forge viewer. В результате на компьютере проектировщика и строителя остается только браузер.

По словам главного специалиста по информационному моделированию зданий компании «Ренейссанс Констракшн» Павла Недвиги, для более глубокого внедрения данных новых технологий в проектирование понадобится два-три года. Также за этот период станет обыденной инвестиционная оценка проекта на основе информационной модели. Относительно нетиповыми технологиями останутся Machine learning & Data science. Пока имеются единичные примеры их использования. Но востребованность такого направления в ближайшие годы будет расти.

Заместитель генерального директора ООО «ПСС ГРАЙТЕК» Борис Воробьёв соглашается с коллегами. По его словам, сегодня технология BIM получила устойчивое распространение в проектировании и все больше внедряется в управление строительством. Он отмечает, что сейчас в отрасли получают распространение практика сдачи проектов на госэкспертизу в формате BIM, расчет стоимости объекта на ее основе. Также специалисты используют в работе 3D-координацию и обнаружение коллизий, автоматизированную проверку соблюдения норм в проекте и др.

В «едином окне»

По словам руководителя бизнес-направления компании Advalange Дмитрия Мордвинцева, отдельно существует потребность в удобном механизме представления отчетности. В этой сфере прекрасным инструментом, повышающим эффективность реализации проекта, является BPM-система. Она позволяет автоматизировать в формате «единого окна» взаимодействие между госзаказчиком, генподрядчиком, исполнителями на местах и оперативно предоставлять консолидированную отчетность проверяющим органам. Ключевым отличием BPM-систем является консолидация всех строительных процессов в формате «единого окна». Также возможно подключение сторонних систем, таких как видеонаблюдение объекта в режиме онлайн, картографических сервисов, и формирование различных информационных досок для всех участников процесса.

«Регионы, корпорации и проектные организации, которые уже внедрили подобные системы, отмечают существенное высвобождение ресурсов от рутинной работы. За всеми участниками процесса закрепляются формализованные зоны ответственности. Осуществляется полный контроль целевого исполнения бюджета проекта. Что особенно приятно, данные системы являются стопроцентно российскими разработками и внедряются отечественными компаниями», – добавил Дмитрий Мордвинцев.

Генеральный директор ООО «Дорианс» Сергей Луценко добавляет, что проектно-изыскательским компаниям, несомненно, в будущем помогут дроны в сочетании со спутниковыми тарелками. Уже сейчас на рынке есть несколько предложений, где беспилотник сверху снимает плановое положение, а стоящий на земле GNSS-приемник отслеживает его высотное положение. С помощью такой комбинации можно производить топографическую съемку и осуществлять сопровождение строительства. Также, на его взгляд, со временем в строительство ворвется технология 3D-печати. И это будет печать по заранее разработанным чертежам из различных материалов, не только из полимеров, но и из стали с бетоном.

Мнение

Кирилл Няшин, начальник отдела по информационному моделированию строительства компании «Ренейссанс Констракшн»:

– В настоящее время для небольших объектов наблюдается уход проектирования в облачные сервисы. Также для них задействуется лазерное сканирование. Это помогает получить более точные объемы работ, материала, а также рассчитать их стоимость. При этом 4D-моделирование в таких проектах обычно задействуется для разделов конструктивных решений и фасадов. Для крупных и ответственных объектов уход в облако пока сомнителен с точки зрения безопасности. Кроме того, существует вероятность закрытия облачных решений для объектов госзаказа. Соответственно, данный фактор будет тормозить развитие облачных решений на всех этапах проектирования в данном сегменте.

Тем не менее, в целом технологии развиваются очень быстро. Все более обыденными становятся использование эксплуатационной модели здания, безбумажный прием объектов в экспертизу. Также все более активно задействуются на строительной площадке AR-технологии для контроля монтажа, проводятся VR-конференции между географически отдаленными офисами для обсуждения модели объекта.

Тимофей Татаринов, генеральный директор IТ-компании «Мобильные решения для строительства»:

– В проектировании действительно все активнее заметен переход на BIM. В строительстве же цифровые технологии стоит делить на «человеческие» и инструментальные. Инструментальный контроль осуществляется при помощи дронов, лазерного сканирования, облака точек. Хотелось бы верить, что через пять лет в строительной сфере нас ждет повсеместное использование компактных лазеров, сканеров или дронов, которые будут оперативно передавать статус текущего хода строительства. Тем более, что многие из используемых сейчас технологий становятся с каждым годом доступнее.

«Человеческие» технологии – это визуальный контроль качества, к которому наблюдается растущий интерес. Судя по нашим клиентам, компании с большими объемами застройки нацелены на создание единого информационного пространства для обмена данными. Особенно важно для развития отрасли, чтобы аналоговый общий журнал работ перешел в цифровой формат. Технически для этого все готово.

Новых IT-технологий в строительной сфере не появлялось давно, все было разработано в 1990-х, 2000-х и 2010-х годах. Сейчас нужно смотреть на то, какие решения появляются на основе этих технологий: искусственный интеллект, Big Data, VR/AR. Но например, VR на строительной площадке пока не находит нормального применения, в лучшем случае – используется в обучении.

Искусственный интеллект и Big Data – это то, куда все идет. Все это может применяться как руководителями, директорами по строительству, генеральными директорами, так и непосредственно исполнителями, инженерами. Однако сейчас таких решений нет не только в России, но и за рубежом.


АВТОР: Виктор Краснов
ИСТОЧНИК: СЕ №34(895) от 18.11.2019
ИСТОЧНИК ФОТО: https://secureservercdn.net/, https://kamzkh.ru/, https://insights.abnamro.nl/

Подписывайтесь на нас: