Строительство линий электропередач


24.08.2021 09:43

Линия электропередач — компонент электрической сети, который предназначен для передачи электроэнергии при помощи тока на большие расстояния. Прежде чем приступить к строительству, требуется разобраться в видах ЛЭП и их особенностях.


Виды ЛЭП

ЛЭП делят на два вида:

  • воздушная;
  • кабельная.

Главное назначение ЛЭП — передача электроэнергии. Также по проводам производят трансляцию высокочастотного сигнала. Его используют для передачи телеметрической информации. Во время строительства соблюдают правила безопасности, так как в процессе монтажа легко получить травму или погибнуть.

Классификация воздушных линий электропередач

Воздушная линия обладает высокой электропроводностью при условии использования прочных канатов, повышенной устойчивостью к механическому повреждению и коррозии. Ее разделяют по классам:

Классы воздушных линий электропередач

Характеристика

По виду тока

  • переменные;
  • постоянные (применяются редко).

По напряжению

  • для постоянного тока используют напряжение только 400 кВт;
  • для переменного тока напряжение бывает от 0,4 до 1150 кВт.

По назначению

  • сверхдальные (от 500 кВт) — подходят для объединения энергосистем;
  • магистральные (220 или 320 кВт) — объединяют электростанции между собой;
  • распределительные — с напряжением от 35 до 150 кВт для соединения крупных предприятий или населенных пунктов;
  • ВЛ с напряжением до 20 кВт — подводят электричество к конечному потребителю.

По режиму работы

  • нормальный, когда тросы и провода не оборваны;
  • аварийный — частичный или полный обрыв троса или провода;
  • монтажный — в процессе установки опор, тросов и проводов.

ЛЭП поднимают высоко над землей. При этом изоляционным материалом служит воздух. Напряжение воздушных линий электропередач выбирают, исходя из назначения.

К недостаткам ВЛ относят:

  • широкую полосу отчуждения, так как возле ЛЭП запрещается возводить сооружения и высаживать деревья;
  • незащищенность от погодных условий и внешних воздействий: падений деревьев, ударов молнии;
  • эстетическую непривлекательность (в черте города чаще всего используют кабельный метод).

Воздушная линия электропередачи дешевле кабельной по стоимости строительства и ремонта, так как не приходится осуществлять земляные работы во время замены проводов, а также не затрудняется визуальный осмотр состояния ВЛ.

Воздушная линия электропередачи
Воздушная линия электропередачи
Источник: https://proprikol.ru

Важные моменты при составлении проекта ЛЭП

Прокладку проводов воздушной линии электропередач (ВЛ) осуществляют по воздуху и закрепляют на арматуре. Установку проводят по высоковольтным столбам, путепроводам и мостам.

В состав конструкции воздушных линий электропередач входят:

  • железобетонные или металлические опоры;
  • изоляционные материалы;
  • разрядники;
  • кабели с различными показателями;
  • тросы с защитой от молнии;
  • вспомогательное оборудование;
  • арматура;
  • провода;
  • траверсы.

Каждый элемент, входящий в состав, выполняет определенные задачи и несет свои нагрузки. Если по опорам линии планируется проводить высокочастотный канал связи, то добавляют оптоволоконные кабели и необходимое вспомогательное оборудование.

Установка ЛЭП
Установка ЛЭП
Источник: https://buriyama.ru/

Кабельная линия электропередачи (КЛ)

Кабельные линии разделяют по классам:

Классификация кабельных линий электропередач

Характеристика

По типу изоляции

  • жидкостная;
  • твердая.

По условиям прохождения

  • подземные;
  • подводные;
  • по сооружениям.

По роду тока

  • переменные;
  • постоянные (используют редко).

К КЛ относят кабельный:

  1. Туннель — это коридор, в котором располагаются опорные конструкции для расположения проводов и муфт. На всей длине предоставляется свободный проход, который дает возможность без препятствий проводить укладывание кабелей, осуществлять осмотр и при необходимости ремонт.
  2. Канал — это запрятанное в перекрытиях или грунте непроходное сооружение, в котором размещаются кабели. Укладывать, осматривать и ремонтировать элементы можно только при полном снятии перекрытия.
  3. Шахта — это конструкция по высоте в несколько раз превосходящая стороны сечения. Снабжается лестницей или скобами, которые дают возможность беспрепятственно передвигаться людям (проходная шахта). Также бывает непроходная шахта, в которой устанавливается полностью съемная или частичная стенка.
  4. Этаж — это часть зданий, ограниченная перекрытиями. Дистанцию между выступающими частями перекрытия делают от 1,8 м.
  5. Двойной пол — полость, ограниченная стеной помещения, полом и этажными перекрытиями со съемными плитами.
  6. Блок — это сооружение с каналом или трубой, которое предназначается для кабелей и колодцев.
  7. Камера — подземное сооружение, закрытое глухой съемной бетонной плитой. У нее имеется люк для входа, который называют кабельным колодцем.
  8. Эстакада — наземная (надземная) открытая наклонная конструкция большой протяженности.
  9. Галерея — проходное надземное (наземное) полностью или частично закрытое сооружение, которое бывает горизонтальным или наклонным.

Недостаток кабельной линии:

  • в процессе строительства для изготовления кабелей используют большое количество металлов: меди, алюминия;
  • подверженность металлических частей кабеля коррозии;
  • возможность повреждения во время проведения земляных работ.

Преимущества кабельной линии:

  • по сравнению с воздушной линией отличается повышенной сопротивляемостью внешним механическим воздействиям;
  • хорошая защита от атмосферных действий и ударов молнии;
  • экономия площади на поверхности земли;
  • независимость от сельскохозяйственных работ на поле;
  • повышенная безопасность для человека и животных.

Прокладывают кабельные ЛЭП по земле, стене, по столбам и под водой.

Кабельная линия электропередачи
Кабельная линия электропередачи
Источник: https://www.air-ventilation.ru

Этапы строительства ЛЭП

Строительство линий электропередачи включает:

  • разработку трассы;
  • проектирование;
  • согласование подготовленного проекта;
  • геодезические работы;
  • монтаж.

На основании проектных документов проводят все этапы строительства ЛЭП.

Разработка трассы

В первую очередь определяют и согласовывают месторасположение, учитывая определенные правила:

  • у будущей ЛЭП должен быть минимизирован контакт с ж/д путями и автомобильными магистралями;
  • сводят к минимуму расположение тротуарных и велосипедных дорожек рядом с линиями электропередач;
  • длину ЛЭП выбирают по методу кратчайшего расстояния между начальной и конечной точкой.

Для согласования и утверждения трассы подготавливают документы для:

  • отведения территорий под монтаж линии электропередач;
  • получения разрешений на вырубку деревьев;
  • расчета стоимости и определения вида работ.

После получения разрешительных документов приступают к проектированию.

Проектирование

При составлении проектно-технической документации учитывают:

  • климатическую особенность региона (например, ветровую нагрузку);
  • геологическую и геодезическую особенность местности: рельеф, состояние грунта;
  • информацию о коммуникационной и инженерной сети, расположенной вдоль трассы;
  • пожелания заказчика;
  • тестовое задание.

Также учитывают загрязнение окружающей среды, ветровую нагрузку и климат. В проекте в обязательном порядке отображают:

  • капитальные строения, которые находятся поблизости;
  • коммуникации;
  • объекты, влияющие на удаленность ЛЭП и выбор материалов.

При проектировании определяют место прохождения ЛЭП таким образом, чтобы движение транспорта и передвижение пешеходов было беспрепятственным. Узлы располагают в доступном месте для возможности быстрого проведения ремонта и планового техобслуживания.

После получения данных инженерно-геодезических работ составляют план. Его отправляют на согласование землепользователям и организации, на балансе которой находится участок для строительства ЛЭП.

После подписания документа составляют проектно-техническую документацию, в которой разрабатывают разделы:

  • определения нагрузки на ЛЭП, которая возникает под действием гололеда, ветра и других климатических факторов;
  • с перечислением мер, применяемых для охраны окружающей среды и безопасности рабочих при монтаже ЛЭП;
  • с решением обеспечения надежности с обоснованиями и расчетами используемого оборудования;
  • с выбором релейной защиты и линейной автоматики;
  • с мерами противопожарной безопасности;
  • о протяженности ЛЭП;
  • с направлением трасс;
  • с чертежами металлоконструкций, опор;
  • с планом территории;
  • с графическими документами.

Подготовленную документацию проверяет сотрудник проектной организации, который при необходимости исправляет недочеты.

Утверждение проекта

Проектно-техническую документацию на ЛЭП утверждают:

  • организация, владеющая коммуникациями, которые пересекает ЛЭП или попадает в ее охранную зону;
  • специалисты службы местной электрической сети;
  • собственник земельного участка, по которому проходит ЛЭП;
  • специалист Федеральной службы по атомному, экологическому и технологическому надзору.

После того, как рабочий проект согласуют, приступают к строительству.

Строительство линии электропередач

Строительство ЛЭП начинают с подготовки подходящих условий для рабочей бригады. Для этого:

  • планируют место для установки опоры;
  • возводят сооружения для временного проживания бригады;
  • устраивают временные базы для хранения материалов;
  • сооружают один или несколько подъездных путей;
  • делают разметку территории.

Проектировка и монтаж ЛЭП не могут проводиться без опор. Чаще всего используют конструкцию из железобетона или металла. Сначала бурят места под опоры. Для этого привлекают специализированную технику, проводят высотно-монтажные работы и используют машины, которые способны поднимать тяжелые грузы.

На следующем этапе приступают к сооружению изоляции, без которой не получится ввести ЛЭП в эксплуатацию. Она необходима для установки кабелей на опоры. Изоляцию крепят на траверсы. Чтобы обеспечить безаварийную работу системы, манипуляции проводят специалисты.

После установки опор приступают к креплению кабелей. Для этого используют специальную технику, которая осуществляет протяжку. Если линия свыше 10 кВт, то применяют СИП кабель. Провод данного типа повышает надежность и безопасность воздушной линии и делает ее обслуживание более экономным.

Каждый провод проходит через изолятор, который бывает различных типов:

  • стеклянный;
  • фарфоровый;
  • полимерный.

Тип выбирают, ориентируясь на климат местности и возможные загрязнения окружающей среды. Для линий с напряжением от 35 до 220 кВт отдают предпочтение полимерному или стеклянному материалу.

По способу крепления кабелей бывает два вида изоляторов:

  • штыревой (крепится на крюк или штырь);
  • подвесной (крепят при помощи арматуры к опорам).

Использовать штыревой вид можно только на легких проводах. Сам кабель закрепляют на голове или шейке изолятора в зависимости от выбранного типа опоры.

Штыревой способ крепления кабелей ЛЭП
Штыревой способ крепления кабелей ЛЭП
Источник: http://rrrcn.ru

Монтаж воздушной линии электропередачи

При сложном рельефе целесообразно монтировать воздушную линию электропередач, которая позволяет сокращать расходы на специальную технику и трудозатраты. При монтаже не надо предварительно раскатывать кабели по земле. При натягивании провода не повреждаются царапинами и сколами.

Применение программируемой машины для натяжения упрощает строительство перехода линии через:

  • транспортный путь;
  • инженерное сооружение;
  • железнодорожный путь.

Раскатку осуществляют специальными роликами сразу на опоры. Повреждение натягивающихся проводов исключено, так как гидравлическая машина отключается при достижении необходимого уровня тяжения.

Монтаж воздушных линий электропередач «под тяжением»

Монтаж ЛЭП «под тяжением» — это раскатка проводов по земле. К преимуществам относят:

  • отсутствие необходимости вторжения в природную среду;
  • исключение нагрева кабеля, которое возникает при повреждении поверхности;
  • повышение экономичности и скорости выполнения работ;
  • исключение образования радиопомех;
  • отсутствие коронного эффекта;
  • увеличение безопасности работ.

Во время монтажа кабель постоянно находится высоко от земли. Благодаря этому бригада может работать в любой местности и обстановке. Для монтажа создают две площадки для:

  • натяжной машины;
  • тормозной машины.

Расстояние делают между площадками от 6 до 12 километров. Монтаж в таких условиях проводят, соблюдая требуемые габариты над пересекаемыми объектами. Поэтому строительство не влияет на инфраструктуру и окружающую среду.

При строительстве воздушной линии электропередач работы проходят гораздо быстрее, чем при кабельной, так как естественные и искусственные преграды (дороги, здания, реки, озера, леса, горы) не становятся препятствиями.

При монтаже ВЛ обязательно прорубают просеку. Ширину определяют в зависимости от выбранного класса напряжения. На местности, которая имеет населенные пункты, выполняют заземление, защищающее линию от атмосферного перенапряжения. Заземление оборудуют на опоре с ответвлением к вводу на сооружение и здание, а также на концевом столбе линии с ответвлением.

Монтаж воздушных линий электропередач «под тяжением»
Монтаж линии электропередач «под тяжением»
Источник: http://vel-energo.ru

Основные характеристики процесса строительства ЛЭП

В таблице указаны условия, которые необходимо соблюдать в процессе строительства ЛЭП:

Местность

Длина участка (км)

Равнина

5-15

Холмистая местность

3-5

Горы

Определяют в каждом случае индивидуально.

Для монтажа ЛЭП используют бригаду численностью от 15 до 25 человек.

Контроль над строительством ЛЭП

В процессе строительства линий электропередач эксплуатационный персонал выполняет технический надзор за ходом монтажных работ. Особое внимание уделяют скрытым работам. Например, правильному:

  • заглублению опор;
  • уплотнению котлована опор песчано-гравийной смесью;
  • монтажу ригелей оттяжки анкерной опоры.

Персонал контролирует, чтобы не было загнивших деталей на деревянных опорах, следит за правильностью крепления контактных соединений кабелей. Если в ходе строительства обнаруживают дефект, то об этом сразу сообщают представителю подрядчика, чтобы недочеты были устранены в максимально сжатые сроки.

После окончания монтажа заказчика письменно извещают о том, что линия электропередач готова к сдаче в эксплуатацию и подключению к напряжению. После этого клиент собирает рабочую комиссию, в состав которой входит председатель, подрядчик, представитель проектной организации и органы госнадзора.

Контроль над строительством ЛЭП
Контроль над строительством ЛЭП
Источник: https://www.ao-avtomatika.ru

Обязанности рабочей комиссии

Рабочая комиссия:

  • проверяет, соответствуют ли объемы выполненных работ смете, проекту и документам;
  • детально осматривает линию электропередач и выборочно проверяет скрытые работы;
  • составляет протокол измерений;
  • проверяет качество;
  • вносит в ведомость выявленные при осмотре дефекты и недоделки.

Рабочей комиссии подрядчик предоставляет документы:

  • список субподрядчиков, которые участвовали в строительстве ЛЭП;
  • проект воздушной линии с рабочими чертежами;
  • паспорт линии электропередач;
  • трехлинейной схемы с номерами опор, в которой фазы окрашены в разные цвета;
  • журналы выполненных работ по монтажу тросов, проводов, а также строительной части;
  • протокол осмотра и измерения переходов воздушных линий, которые составлены подрядчиком вместе с представителем заинтересованной организации;
  • протокол измерений, использующихся заземляющих устройств.

После того, как подрядчик устраняет выявленные дефекты и недоделки, рабочая комиссия подготавливает акты приемки линий в эксплуатацию.

Документы для ввода линий электропередач

Для принятия линии электропередач назначают приемную комиссию. Подрядчик предоставляет документы:

  • по отводу земли под трассу линии электропередач;
  • акты по приемке рабочей комиссией;
  • утвержденную сметно-проектную документацию;
  • справку о том, что фактическая стоимость строительства соответствует указанной в проекте.

Приемочная комиссия изучает информацию, указанную в документах. Затем производит осмотр линии электропередач, определяет, качественно ли выполнены работы и их соответствие проекту. После изучения всей информации определяет готовность ЛЭП к вводу в эксплуатацию.

Если линия электропередач исправна, то комиссия в письменной форме дает согласие на запуск. Включение проводит эксплуатационный персонал, после того, как получит уведомление подрядчика о том, что:

  • на объекте нет людей;
  • заземление снято;
  • линия электропередач готова к включению.

Если в течение суток линия электропередач работает безотказно, то комиссия подписывает акт передачи в эксплуатацию. После этого ЛЭП переходит к заказчику и становится на баланс эксплуатирующей организации, которой передают технические документы.

Стоимость строительства

Стоимость строительства ЛЭП рассчитывают в каждом случае индивидуально. Цена зависит от:

  • особенности района;
  • трассы;
  • удаленности объекта;
  • монтажа кабельной или воздушной линии;
  • объема работ;
  • необходимости доставки строительных материалов;
  • сроков строительства;
  • установки под ключ.

Финальную стоимость рассчитывают после изучения особенностей работ и сложности разработки проектной документации. Рационально заказывать услугу «под ключ». Это поможет сократить время строительства и приобрести уверенность, что работа будет проходить последовательно и в оговоренные сроки.

Выбирая подрядчика, обращайте внимание на:

  • реальный опыт работы в строительстве ЛЭП;
  • стаж руководителя, который контролирует проведение работ;
  • допуск бригады к выполняемой работе.

В процессе строительства контролируйте закупку необходимых материалов, обращая внимание на их качество. Это повысит безопасность и увеличит время службы линии электропередач.

В каждом случае работа и нагрузка ЛЭП отличаются. Поэтому на этапе подготовки необходимо уделять повышенное внимание составлению проекта. Современные технологии позволяют просчитывать все тонкости и строить линии электропередач в запланированный период времени.

Линия электропередач (ЛЭП)
Линия электропередач (ЛЭП)
Источник: https://www.energo-konsultant.ru


ИСТОЧНИК ФОТО: https://www.goodfon.ru/


Фундамент под прикрытием


25.05.2021 09:16

ТЕХНОНИКОЛЬ выделила в отдельную линейку битумно-полимерные мембраны для гидроизоляции заглубленных конструкций.


Корпорация ТЕХНОНИКОЛЬ разрабатывает и внедряет оптимальные решения для всех видов строительных конструкций, требующих эффективной гидроизоляции. Поэтому для удобства проектных и строительных организаций компания выделила в линейке премиальных битумных мембран ТЕХНОЭЛАСТ «фундаментную» серию материалов с улучшенными характеристиками.

Это специализированные продукты на основе полимерно-модифицированного битума для надежной изоляции фундаментов, стилобатов, тоннелей, подземных парковок и иных заглубленных в грунт конструкций.

Новая «фундаментальная» линейка ТЕХНОЭЛАСТ с усиленными для своего функционала свойствами представлена четырьмя новыми марками премиальных мембран:

- ТЕХНОЭЛАСТ ФУНДАМЕНТ П

- ТЕХНОЭЛАСТ ФУНДАМЕНТ ФИКС П

- ТЕХНОЭЛАСТ ФУНДАМЕНТ ТЕРРА П

- ТЕХНОЭЛАСТ ФУНДАМЕНТ ГИДРО П

Важно! За счет включения в рецептуру новых современных модификаторов были существенно улучшены важные потребительские свойства материалов: теплостойкость, адгезия к основанию, удобство наплавления на основание. Причем речь идет исключительно о российских модификаторах, разработанных с участием экспертов корпоративного научного центра битумных материалов и герметиков компании ТЕХНОНИКОЛЬ.

Каждая марка имеет свои специфики, позволяющие надежно работать как на горизонтальных, так и на вертикальных поверхностях, на глубине до двадцати и более метров, под большой нагрузкой грунта, при высоком уровне влажности и в химически агрессивной среде.

Материалы могут укладываться на вертикальные, горизонтальные и наклонные заглубленные конструкции как методом наплавления, так и в виде свободной укладки с механической фиксацией на поверхности. Они могут применяться как в однослойных, так и в двухслойных решениях гидроизоляции.

Их свойства, сферы применения, метод укладки и комбинации материалов учитывают все существующие на российском рынке потребности и технологии гидроизоляции заглубленных конструкций.

Мембрана ТЕХНОЭЛАСТ ФУНДАМЕНТ П используется для устройства наплавляемой двухслойной гидроизоляции. Чаще всего мембрана применяется и для первого, и для второго слоев. Но возможны комбинации с мембранами ТЕХНОЭЛАСТ ФУНДАМЕНТ ТЕРРА П или ТЕХНОЭЛАСТ ФУНДАМЕНТ ГИДРО П. В любом случае оба слоя укладываются только наплавлением.

Обе стороны материала с битумно-полимерным вяжущим закрыты легкосгораемой полимерной пленкой. Может монтироваться на конструкциях глубиной более двадцати метров.

ТЕХНОЭЛАСТ ФУНДАМЕНТ ТЕРРА П рассчитан на однослойную гидроизоляцию конструкций с глубиной залегания не более двадцати метров.

Материал предназначен для укладки с механической фиксацией к основанию, однако при необходимости может укладываться также методом наплавления. Внешняя сторона мембраны дополнительно защищена плотной минеральной посыпкой.

Возможна и двухслойная укладка. При этом второй слой материала ТЕХНОЭЛАСТ ФУНДАМЕНТ ТЕРРА П укладывается только методом наплавления.

Наплавляемая мембрана ТЕХНОЭЛАСТ ФУНДАМЕНТ ГИДРО П, с учетом ее усиленных характеристик, предназначена для устройства гидроизоляции в один слой методом наплавления на любых заглубленных конструкциях. На особо ответственных объектах материал укладывается в два и три слоя.

Битумно-полимерная мембрана ТЕХНОЭЛАСТ ФУНДАМЕНТ ФИКС П рассчитана на устройство первого слоя гидроизоляции методом механической фиксации в двухслойном решении. Благодаря методу укладки материала праймирования основания не требуется.

Вторым слоем монтируется ТЕХНОЭЛАСТ ФУНДАМЕНТ П методом сплошного наплавления.

Новая «фундаментная» линейка закрывает наиболее актуальные потребности современного рынка в сфере эффективной гидроизоляции подземных конструкций и повышает удобство при выборе материала по узкофункциональному признаку.


ИСТОЧНИК ФОТО: пресс-служба компании ТЕХНОНИКОЛЬ


Добавки в бетон


25.05.2021 07:29

Использование бетона в современных условиях немыслимо без применения дополнительных добавок. В промышленном строительстве уже не встретить бетонного раствора классического состава: цемент, щебень, песок и вода. Такая рецептура применима для частного строительства, неответственных конструкций и начинающими специалистами.


Для чего нужны добавки в бетон

Чтобы ответить на этот вопрос, надо знать свойства бетона. В первоначальном виде бетонная смесь состоит из четырех компонентов. Играя пропорциями водоцементного соотношения, регулируются показатели прочности и удобоукладываемости. Например, для того чтобы получить бетон популярной марки М300 или класса В22,5 необходимо задействовать в частях следующие материалы:

  • Портландцемент марки М400 – 1часть.
  • Щебень гранитный или гравийный- 3,3 части.
  • Песок- 2 части.
  • Вода- 0,57-0,6 части.

На выходе получается бетон с характеристиками:

  • Прочность на сжатие- 29 Мпа или 270 кгс/см2.
  • Подвижность или удобоукладываемость - П2. Измеряется по осадке конуса бетонной смеси относительно первоначальной формы, и составляет 7-9 см.
  • Морозостойкость- F150.
  • Водопроницаемость- W5.
  • Плотность 2400 кг/м3.

О чем говорят эти цифры на практике. В практическом применении приготовленная смесь ведет себя следующим образом. Подвижности смеси на уровне П2 недостаточно, чтобы раствор гарантированно заполнил полости сложной опалубочной конфигурации объекта. Возникает угроза образования многочисленных пор и пустот. От этого лабораторный показатель прочности будет не 29 Мпа, а значительно ниже. Данный факт влияет на надежность бетонной конструкции и возможность выполнения возложенных на нее функций. Такой бетон сложно ровнять на площадке и формировать монолит. Необходимо придать смеси текучесть, пластичность, подвижность. Это можно сделать тремя способами:

  • Внести большее количество воды. Избыток влаги неминуемо приведет к потере прочности, образованию трещин, повышению истираемости.
  • Увеличить показатель тиксотропности. Тиксотропность- способность жидкости разжижаться при определенном виде механического воздействия. То есть использование бетонного вибратора решит вопрос текучести смеси. Но использование технологического оборудования влияет на удорожание работ с бетонной смесью и далеко не всегда оправданно и возможно использование виброинструмента.
  • Добавить к бетонному раствору вещества, которые уменьшают сцепление частиц смеси между собой, тем самым увеличивая их подвижность. Так возникли пластификаторы.
Добавки в бетон
Добавки в бетон
Источник: https://vectorbeton.ru

Экспериментально установлено, что прочность близкую к 100% бетон набирает через 28 дней. Строительные нормы допускают предварительное нагружение бетона и его распалубку при 70-80% прочности. Этот показатель достигается за 5-7 дней. В существующих бизнес-моделях производства и строительства такой простой считается недопустимым. С другой стороны, в массивных и объемных конструкциях важно, чтобы процесс гидратации проходил плавно. В этом случае процесс кристаллизации раствора нужно замедлять. Для регулирования скорости кристаллохимического отверждения разработаны добавки ускорители и замедлители схватывания.

В классической по составу бетонной смеси возможна реакция гидратации только при положительных температурах. При температуре раствора +50С скорость реакции серьезно снижается, при 00С, когда вода кристаллизуется, прекращается вовсе. Фактор чрезвычайно важен тем, что непрогидратированная смесь никогда не наберет проектную прочность. Этот вопрос решают подогревом смеси или введением добавок, препятствующих замерзанию влаги.

В приведенном примере водопроницаемость бетона составляет W 5. Это значит, что при избыточном давлении воды в 5 кгс/см2 она не просочится сквозь стенку толщиной в 10 см. Изделия из бетона эксплуатируются в различных условиях, в том числе при долговременном воздействии влаги: фундаменты с высоким расположением горизонта грунтовых вод, опоры мостов, пирсы, причалы, судовые верфи. В этих случаях важно снизить проникновение воды в толщу бетона во избежание вымывания частиц вяжущего компонента, агрессивного химического воздействия и уменьшения прочности бетонной конструкции. Для улучшения показателя водонепроницаемости вводят водоотталкивающие компоненты.

Одним словом, добавки необходимы для улучшения технико-физических свойств цементных смесей и управления свойствами бетонов.

Какие бывают виды добавок

Для формирования проектных свойств в бетонные составы вносятся добавки:

  • Пластификаторы
  • Модификаторы
  • Антиморозные добавки
  • Водоотталкивающие
  • Антикоррозийные
  • Воздухововлекающие
  • Для самоуплотнения
  • Регуляторы набора прочности
  • Для реставрационных работ
  • Комплексные.

Пластификаторы

Наиболее популярный вид добавок. При использовании пластификаторов возможно увеличение подвижности бетонной смеси с П1 до П5. Использование пластификаторов делает бетонный раствор удобоукладываемым, прочным и долговечным. Пластификаторы обладают водоредуцирующими свойствами. То есть способны снижать расход воды без потери прочности цементного камня. Пластифицирующие добавки способны продлить жизнь раствору, препятствуют расслоению, позволяют задействовать на стройплощадке насосы. Привлечение техники ускоряет процесс закладки бетона в конструкцию и увеличивает производительность труда. Таким образом пластификаторы обладают рядом преимуществ:

  • Повышают пластичность готового раствора.
  • Экономят расход смеси
  • Повышают трещиностойкость бетона.
  • Увеличивают прочностные характеристики произведенного бетона до 30%.
  • Пластифицированные бетонные растворы не требуют уплотнения.
  • Возрастает морозостойкость бетона за счет снижения количества влаги при производстве.
  • Растворы с пластификаторами обладают хорошей адгезией с разными поверхностями.

Пластификаторы выпускаются в виде жидкостей и порошковых смесей.

Пластификаторы
Пластификаторы
Источник: https://kazan.stroyportal.ru

Антиморозные добавки

Не стоит полагать, что применяя антиморозные добавки, не нужно думать о температурных условиях, в которых происходит твердение бетонной смеси. Важно знать, что антиморозные добавки предназначены, в первую очередь, для того чтобы обеспечить доставку смеси в удобоукладываемом состоянии и не допустить кристаллизации влаги при укладке раствора. На площадке должны быть обеспечены меры по прогреву бетона и влажностный режим.

Противоморозные свойства добавки сводятся к одному принципу- понижению температуры замерзания воды в бетонной смеси. Это достигается за счет введения в бетонный раствор солей тех. квалификации: хлорида натрия, хлорида кальция, кальцинированной соды, поташа(карбоната калия), натриевой и кальциевой селитры, формиат натрия (натриевая соль муравьиной кислоты).

Применение исключительно противоморозных добавок сопряжено с рядом существенных минусов:

  • Быстрое твердение бетона
  • Используемые соли химически активны, способны вступать в реакцию с продуктами бетонной смеси, с последующим выделением вредных веществ, например, окислов азота или аммиака.
  • Использование не по рецептуре приводит к коррозии арматуры и щелочной коррозии бетона.
  • Снижается прочность бетона.

Чтобы нивелировать отрицательные проявления антиморозных наполнителей, рекомендуется использовать их только вкупе с пластифицирующими и воздухововлекающими компонентами, регуляторами твердения. Это позволяет снизить концентрацию противоморозных веществ.

О полной безопасности и экологичности антиморозных компонентов не может идти речи, пока в их составе есть хлор и опасные соединения азота. Поэтому лучшим способом повысит безопасность бетонной конструкции остается планирование работ в теплое время года.

Антиморозные добавки в бетон
Антиморозные добавки в бетон
Источник: https://goodhim.com

Водоотталкивающие добавки

Наличие влаги в готовой бетонной конструкции может существенно влиять на ее свойства в худшую сторону. Если бетон способен впитывать, пропускать влагу, то непременно снижается прочность, долговечность и морозостойкость конструкции. Бетон способен накапливать влагу благодаря наличию в структуре пор и капилляров; присутствию внутренних напряжений и деформаций, которые ведут к образованию микро-и макротрещин. Водопроницаемость бетона обозначается буквенным индексом W. Нормируется от W2 до W20. Бетон с водопроницаемостью W4 используется в тех ситуациях, когда показатель гидрофобности (водоотталкивания) не имеет значения. W6- бетон с таким показателем наиболее часто используется в строительных работах. W8- бетон с таким показателем пропускает мало влаги и применяется для возведения фундаментов на сухих основаниях. Бетон с показателем гидрофобности выше W8 применяется для возведения гидротехнических сооружений.

Водоотталкивающие добавки в бетонную смесь работают по одному принципу: уплотняют бетонный монолит, уменьшают вероятность появления пор и капилляров. Такого эффекта удается добиться в результате химических реакций между водой цементом и наполнителем. В результате образуются нерастворимые соединения, заполняющие микропустоты. Водонепроницаемость бетона повышают нитраты, сульфаты, хлориды железа, сульфаты алюминия, добавки на основе битумных эмульсий.

Защитить бетон от проникновения влаги можно используя проникающие составы, нанося их на застывшую конструкцию. В этом случае гидрофобизатор проникает вглубь материала на 5-15 см., реагирует, образует полимерные соединения, надежно закупоривает капилляры и поры. Такой метод применяется не только для вновь возведенных строительных конструкций, но и для подверженных растрескиванию изделий.

Водоотталкивающие добавки в бетон
Водоотталкивающие добавки в бетон
Источник: http://www.kurs812.ru

Антикоррозийные добавки

Служат для снижения щелочной коррозии бетона. Антикоррозийный класс добавок призван связать свободные гидроксильные группы. За счет этого происходит уплотнение бетона, повышается его гидрофобность и долговечность.

Антикоррозийная добавка в бетон
Антикоррозийная добавка в бетон
Источник: https://mpkm.org

Воздухововлекающие добавки

Воздухововлекающие добавки используются для увеличения морозостойкости бетона. Пузырьки воздуха в монолите образуют микропустоты. При отрицательных температурах свободная вода застывает, расширяясь и при этом разрывает бетонный камень. В случае наличия мелких пустот, вода заполняет микро- пространство, не нанося вреда монолиту. Воздухововлекающие добавки способствуют снижению плотности бетона, и следственно, прочности. Поэтому вносить воздухововлекающий наполнитель следует с осторожностью и строго следуя указаниям производителя. Воздухововлекающие компоненты применяются также для намеренного снижения удельной массы бетонной смеси; улучшения тепло-и звукоизоляции; снижения расслаиваемости раствора, увеличению трещиностойкости, предотвращению высолов. На практике оправдано применение воздухововлекающих добавок с пластификаторами бетона.

Воздухововлекающие добавки в бетон
Воздухововлекающие добавки в бетон
Источник: https://kazan.stroyportal.ru

Добавки для самоуплотнения

Необходимы там, где невозможно провести механическое уплотнение смеси, в частности в часто армированных конструкциях. Применение самоуплотняющих наполнителей гарантирует заполнение опалубочного пространства без потери прочностных характеристик. Отличительной чертой самоуплотняющихся бетонных растворов является отсутствие расслаиваемости при высокой подвижности смеси. Такие свойства обеспечивает значительная вязкость раствора. Добиться этого удается внесением в рецептуру состава добавок на основе:

  • Целлюлозы
  • Гидролизованного крахмала
  • Полиэтиленгликоля
  • Полимеров.

Самоуплотненные бетоны характеризуются:

  • Низким водоцементным соотношением
  • Существенными водоотталкивающими свойствами
  • Высокой подвижностью- П5
  • Малой пористостью. Содержание пузырьков воздуха не более 5%
  • Значительной прочностью на сжатие, до 100 Мпа

Регуляторы набора прочности

В строительной практике существуют ситуации, когда необходимо ускорить или замедлить схватывание бетонного раствора.

Замедлители гидратации требуются:

  • В жаркую погоду. При повышенной температуре и пониженной влажности из бетонного раствора происходит активное испарение влаги, что приводит к преждевременному схватыванию.
  • При заливке больших по площади объектов. При неравномерном схватывании существует угроза образования холодных швов. Это ухудшает свойства монолитной конструкции
  • При возведении ответственных массивных и гидротехнических сооружений, чтобы избежать появление трещин, вызванных нелинейным твердением бетона.

Замедлить схватывание и увеличить трещиностойкость бетонного раствора способны пластификаторы. Добиться этого можно, увеличив количество вещества, вносимого в раствор. Но в данном случае возникает угроза коррозии арматуры. Поэтому с задачей замедления твердения лучше справляются следующие специализированные препараты:

  • Нитрилотриметиленфосфоновая кислота, в абревиатуре НТФ, шестиосновная органическая кислота. Широко применяется для торможения процессов гидратации.
  • Молочная сыворотка. Остаточный продукт переработки пищевого молока.

Механизм замедления твердения заключается в связывании гидроксильных групп веществами замедлителя, и с изоляцией частиц цемента от воздействия воды, то есть препятствию, снижению скорости реакции гидратации.

Ускорители набора прочности

Ускорение схватывания требуется для того, чтобы снизить простои на стройплощадке и оптимизировать процесс строительства объекта.

Ускорение твердения бетонного раствора- комплексный процесс, который включает в себя внесение добавок-ускорителей в смесь, повышение температуры раствора, снижение испаряемости, контроль температурно-влажностных показателей.

К добавкам, способным увеличить скорость набора прочности бетона относят такие вещества как поташ (карбонат кальция), хлорид кальция и натрия. К применению добавок- ускорителей следует относится крайне внимательно и не превышать рекомендованных производителем норм. Иначе возможно снижение прочности бетона и коррозии стальной арматуры в железобетонных изделиях.

Измерение прочности бетона
Измерение прочности бетона
Источник: https://бетон96.рф

Реставрационные добавки

Особый вид добавок, который отличается специфическими свойствами. Применяется для проведения реставрационных работ железобетонных изделий и бетонных конструкций. Реставрационные добавки должны отвечать следующим требованиям:

  • Иметь повышенную адгезию.
  • Препятствовать коррозийным процессам.
  • Бетон с добавлением добавок должен обладать значительной прочностью.
  • Раствор обязан иметь высокую пластичность и укладываемость.
Ремонтная смесь
Ремонтная смесь
Источник: https://www.lukos-stroy-blizko.ru

Комплексные добавки

Наряду с добавками специфического, узконаправленного действия, на практике часто используются составы, в которых сбалансированы вещества, решающие несколько задач одновременно. Это удобно тем, что при замесе бетонного раствора нет необходимости в дополнительной дозировке компонентов, снимается вопрос о химической агрессивности материалов друг к другу. Эта задача решена производителем при подборе компонентов комплексной добавки.

Как правильно подобрать смесь

В заключении необходимо выделить шаги для правильного выбора состава бетона для строительства. Во-первых, состав бетонной смеси должен быть просчитан специалистами, согласно проектной документации. Во-вторых, важно произвести пробный замес, и провести экспертизу бетонного образца. Это важный момент, так как компоненты бетонного раствора неоднородны, количество примесей варьируется. В-третьих, необходимо учесть все особенности использования бетонной смеси: время на доставку, климатические особенности, технические нюансы, квалификацию работников, подъездные пути, метод разгрузки и укладки бетона. Не секрет, что даже очень качественная бетонная смесь может быть загублена халатностью и непрофессионализмом человеческих рук.


ИСТОЧНИК ФОТО: https://instrumentgid.ru