Информационное моделирование


06.08.2021 07:37

Цифровизация ворвалась во все сферы жизнедеятельности человека. Не осталось в стороне и строительство. Чертежный ватман и логарифмическая линейка уступили место калькулятору и графическим редакторам типа AutoCad. Нельзя говорить, что строительные проекты, уходящих эпох были хуже и примитивнее. Все дело в том, что современные методы и масштабы строительства требуют скорости, точности, четкости в планировании и взаимодействии всех звеньев. Обеспечить слаженность в работе призвана технология BIM.


BIM - это аббревиатура английской фразы "Building information Modeling", что в переводе означает строительное информационное моделирование.

BIM-технология позволяет создавать модели строительных объектов любой сложности: домов, мостов, дорог, тоннелей, скоростных автотрасс и прочего. BIM по парметрам визуализации сходно с 3D моделированием. Отличие заключается в том, что к BIM привязана обширная база данных.

Суть технологии информационного моделирования

При проектировании объекта, используя технологию BIM, в процесс одновременно могут быть включены все участвующие стороны. Техническая сторона технологии заключается в том, что 3D- объект создается из компонентов, находящихся в информационной базе. В электронную базу загружены данные о стоимости материалов, физико-механические характеристики, условия строительства: геологические, экологичесике и климатические данные. При изменении какого-либо составляющего в схеме проектируемого объекта, алгоритм мгновенно просчитает новые параметры.

Для чего необходим BIM

  • Информационное моделирование позволяет создать объект, в котjром все участки взаимосвязаны.
  • Технология позволяет предсказать процессы, котjрые будут происходить в процессе эксплуатации.
  • Предоставляет возможность моделирования аварийных ситуаций и варианты недопущения таковых.
  • Обладая исходными данными, система может заранее вычислить свойства проектируемого объекта.
  • BIM призван оптимизировать во всех отношениях процесс строительства.
  • Внедрение цифровых технологий - это новый виток в развитии строительной индустрии.
Сферы использования BIM
Сферы использования BIM
Источник: https://inno-institute.com

Возможности BIM

Building information Modeling вмещает в себя различные научные дисциплины. При помощи данной технологии в одном проекте можно объединить результаты решений по архитектуре, экономике, экологии, дизайну, инженерии.

Информационное моделирование позволяет коллективную работу над проектом. Одновременно может быть предоставлен доступ архитекторам, проектировщикам, сметчикам, дизайнерам. Каждый специалист может работать независимо от другого на своем уровне. Руководитель проекта предоставляет уровни доступа специалистам. При внесении изменений система гибко реагирует и корректирует проект одновременно на всех этапах.

Заказчикам и застройщикам BIM помогает в том, что:

  • Визуализирует объект
  • Всесторонне рассчитывает эксплуатационные характеристики
  • Позволяет избежать ошибок в проектировании и строительстве
  • Следить за соблюдением технологии возведения объекта и вовремя выявлять отклонения.
  • Дает возможность синхронизировать все этапы работ.
  • Сводятся к нулю недопонимания между участниками проекта. Задумка заказчика, благодаря цифровым технологиям и объемному моделированию "оживет" на экране. Совершенно однозначно система даст ответ насколько возможно реализовать идею, что нужно изменить и в какие траты это выльется.

Все это осуществимо только при условии создания единой информационной среды, которая обеспечит моментальный доступ к базе данных всех специалистов проекта. Возможности современных электронных систем позволяют создать виртуальную реальность, в которой возможно отслеживать и прогнозировать поведение каждого строительного узла из любой геоточки планеты.

Визуализация объекта
Визуализация объекта
Источник: https://mg-p.ru

BIM-технология в мире

Изобретение информационного моделирования повлияло на коммуникацию между специалистами в строительной индустрии, а особенно в международных проектах. Благодаря полной и достоверной информации об объекте: проектная стоимость, технологии, материалы, особенности эксплуатации- достигается эффективное взаимодействие и обмен опытом.

Великобритания

Страна, которая первая внедрила и активно развивает технолгии информационного моделирования в стрительстве. С 2016 года законодательно закреплено, что все бюджетные проекты должны создаваться при помощи BIM. Это позволяет государству отслеживать целевое расходование средств.

Соединенные Штаты Америки

Является активным пользователем BIM-технологий. В США более 70% проектных организаций применяют информационное моделирование.

Испания

С 2018 года BIM является обязательным при строителстве государственных объектов.

Китай

Страна с самой быстроразвивающейся экономикой пока не ввела обязательных требований к использованию BIM, но применение цифровых технологий в строительстве приветствуется. Китайцы оцифровали проекты по строительству атомных электростанций, что говорит о твердом решении внедрять повсеместно информационное моделирование.

Россия

Еще в 2016 году Министерство строительства России вносило инициативу об обязательном использовании BIM в стройках с государственным участием. В 2019 году понятие об информационной модели объекта капитального строительства было закреплено в Градостроительном кодексе, в статье 57. В марте 2020 Михаил Мишустин подписал постановление, согласно которому все бюджетные объекты должны создаваться при помощи BIM.

BIM-объект в России
BIM-объект в России
Источник: https://progresstech.ru

Как создается BIM-модель

Информационные технологии моделирования относительно новое направление в строительстве. Многие специалисты убеждены, что для достижения необходимого результата требуется длительное обучение, навыки программирования и глубокий опыт работы в графических редакторах. Это далеко не так. Интерфейс программного обеспечения выстроен таким образом, чтобы быть понятным всем участникам проекта. Участки по составлению сметы, финансовых отчетов, архитектурных решений, визуализации разнесены в определенные разделы. При взаимодействии с нужными разделами специалист касается только своего направления и ему не нужно расширять дополнять багаж профессиональных знаний.

В базе данных хранятся всевозможные варианты конструктивных элементов. Проектирование ведется поэтапно от подготовки основания до наивысшей степени готовности объекта к эксплуатации. По "кирпичикам" собираются и выстраиваются все элементы. Например, в упрощенном варианте работа по проекту выглядит так: согласно данным геологических изысканий, предельным состояниям грунтов и расчетных нагрузок на объекте применим ленточный фундамент. В библиотеке данных проектировщику необходимо выбрать вид фундамента, тип подушки, марку бетона, марку арматуры, материал опалубки и физические размеры фундамента. Автоматически подтянуться данные о необходимом количестве материала, его стоимости, сформируется объемный план. При этом в модели будут присутствовать не только графические изображения, но и полная информация о свойствах фундамента, включая допустимые нагрузки и предельные деформации. Далее можно подобным образом переходить к стенам и перекрытиям.

Процесс создания BIM-модели

Процесс создания BIM-модели
Источник: https://spc-project.ru

Как функционирует BIM

Чтобы получить объемную информационную модель объекта капитального строительства необходимо выполнить несколько этапов:

  • Проектирование. Первым шагом служит создание 3D- модели объекта с подробными чертежами, объемными видами. Задействуя графический конструктор, параметры объемной модели вносятся в программу, которая рассчитывает характеристики элементов объекта, формирует рабочие чертежи, планирует затраты, готовит спецификацию, описывает перечень предстоящих работ. Для подготовки полноценного проекта к экспертизе и получению разрешения на строительство программа рассчитывает инженерные и энергетические сети, производит теплотехнический расчет здания с учетом климатических особенностей, рельефа, естественной освещенности, формирует данные по энергоэффективности. Помимо основных проектных параметров компьютер дополняет проект данными о рациональной логистике, необходимых вспомогательных объектах и локациях: подъездные пути, площадки разгрузки и хранения, временное водоснабжение и водоотведение, место для мойки спец.техники, бытовки, административные здания и так далее. Заключительным пунктом выступает составление детального плана работ, график выполнения этапов строительства, подбор необходимого количества техники и трудовых ресурсов.
  • Строительство. Технология информационного моделирования позволяет на этапе строительства полностью контролировать ход проведения строительных работ. Делает возможным следить как расходуются финансовые средства заложенные в бюджет стройки. Фиксирует отклонения и корректирует изменения в рамках проекта все управленческие решения. При этом ситуацию на объекте могут отслеживать все заинтересованные стороны: заказчик, застройщик, инвестор, контролирующие и надзорные органы.
  • Эксплуатация. После сдачи строительного объекта в эксплуатацию технологии BIM имеют технические возможности сбора информации о состоянии строения. Данные собираются при помощи датчиков и систем контроля, котрые передают параметры объекта в компьютерную систему. Это позволяет:

 -предотвратить аварийные ситуации.

- отслеживать износ материалов.

- оперативно вносить изменения в конструкцию объектов, зданий и сооружений

- оснастить в короткий срок новым оборудованием объект.

- наладить взаимодействие инженерных служб.

- составить график проведения регламентных работ по обслуживанию

- контролировать оплату и расходы ресурсов: электричества, водоснабжения, водоотведения, кондиционирования, теплоснабжения.

- формировать отчет об эффективности управления недвижимостью. Сюда могут быть включены показатели по аренде, продаже площадей, оплате затрат на содержание и обслуживание.

- проводить технический аудит, планировать мероприятия по развитию инфраструктуры объекта.

Эксплуатация BIM-модели
Эксплуатация BIM-модели
Источник: http://esg.spb.ru

Эффект от использования BIM

Анализ схожих, равнозначных реализованных строительных проектов позволяет говорить о различного рода преимуществах цифрового моделирования перед традиционным подходом. Опыт строительства с применением цифровых технологий позволил выделить наиболее яркие эффекты:

  • Серьезная экономия расходов на строительство- до 20%
  • Сокращение времени возведения объекта на 12%. А это влияет на срок окупаемости и инвестиционной привлекательности проекта в целом.
  • Снижение затрат на эксплуатацию.
  • Более точная информация для управления на 72%. Связано с тем, что в электронном виде всегда можно оперативно найти необходимую информацию. В случае традиционного подхода нужно значительное количество времени для поиска нужных чертежей, схем, и их актуализации.
  • Уменьшение времени на внутриведомственные согласования, увеличение эффективности коммуникации участников проекта на 60%.
  • Повышается точность планирования, снижается количество ошибок, исправлений и доработок на 70%.
  • Укрепление имиджа компании на 82%
  • Увеличение конкурентоспособности при других равных показателях на 60%

Как видно из приведенных цифр внедрение цифровых технологий неизбежно. Цифровизация не оставляет никаких шансов традиционным методам. Достижение высоких показателей и поддержание уровня эффективности возможно только при государственной поддержке, грамотном нормативно-правовом регулировании, проведении политики с четко очерченными задачами.

Перспективы цифровизации

BIM - новая, еще не устоявшаяся, многим непонятная технология. Но и она не предел развития цифровизации. Следующим этапом развития информационного моделирования в строительстве заявлен CIM- City information modelling. Это технология, которая позволяет моделировать развитие городского пространства. По сути является цифровым двойником города. На основе цифровых данных упрощается решение сложнейших вопросов по реконструкции, развитию инфраструктуры, имиджу города, экологии, качеству жизни граждан. До широкого внедрения еще требуется время, но уже в настоящее время руководителями с новаторским мышлением организуются пилотные проекты в рамках планов по развитию городского пространства. Россия в этом вопросе может опираться на опыт зарубежных партнеров, где расчетным и опытным путем доказали колоссальную эффективность цифрового моделирования объектов капитального строительства.

Без всяких сомнений цифровые технологии в России будут наращивать обороты параллельно с тенденциями развития строительной отрасли. BI-моделирование уже актуально в проектировании, строительстве и эксплуатации "умных домов" , "эко домов" и объектов с государственным участием. В масштабе частного гражданского и промышленного строения технологии объемного информационного моделирования пока не получили широкого распространения. Причиной тому служит слабая проработка правовой базы, недочеты в нормативной документации, бюрократические барьеры, консерватизм мышления. Но с каждым днем все больше компаний понимают, что внедрение BIM делает бизнес более доходным, менее трудо и время затратным, а главное, конкурентным и открывает доступ к международным проектам.


ИСТОЧНИК ФОТО: http://sroportal.ru


Арматура


06.04.2021 15:25

Современное строительство, как гражданское, так и промышленное, сложно представить без использования арматуры. Арматура строительная представляет собой стержни, которые в процессе монтажа собираются в необходимую конструкцию: сетку или каркас. Смонтированный каркас или сетку заливают бетонным раствором. Применение армирующего каркаса оправдано тем, что бетон отлично работает на сжатие, но плохо на растяжение. Арматура принимает на себя растягивающие нагрузки и перераспределяет их на массив. За счет этого удается добиться прочности и увеличения несущей способности железобетонных конструкций. Армированные конструкции в значительной мере меньше подвергаются растрескиванию.


Армконструкция должна иметь:

  • Повышенную прочность
  • Устойчивость к вибрации
  • Высокую пластичность
  • Стойкость к деформациям
  • Инертность к коррозийным процессам

Разновидности арматуры

В зависимости от использования арматура бывает:

  • Рабочей. Называется так, потому что преобладающе работает в связке с бетоном. Воспринимает растягивающие, реже сжимающие нагрузки возникающие от веса конструкции и внешних нагрузок.
  • Монтажной. Монтажная арматура не воспринимает никаких нагрузок. Необходима для фиксации и удержании рабочей арматуры в запроектированном положении. Иногда монтажные стержни вынимают.
  • Поперечной. Поперечная арматура устанавливается перпендикулярно продольным несущим стержням. Служит для воспрепятствования усилий сдвига и поперечной силы, и для предотвращения выпучивания продольных прутов арматурного каркаса. Собирает отдельные прутья в объемный каркас и обеспечивает конструкции пространственную работу.
  • Распределительной. Данный тип арматуры необходим для перераспределения нагружающих усилий внутри монолитной конструкции. Связывается с рабочими прутами сваркой или проволочной скруткой.

В настоящее время в строительной индустрии используют два принципиально различных вида арматуры:

  • Стальная. Производится в виде стальных прутов или бухт разной длины и диаметра сечения.
  • Композитная. Изготавливается из органического сырья. И выполняет те же задачи, что и стальная.
Композитная арматура
Композитная арматура
Источник: https://lesovik18.ru/

Общая классификация стальной арматуры

Чтобы проще разбираться в арматурном каркасе, существует классификация по признакам.

По классам арматура бывает:

  • А240. Выпускается сечением от 6 до 40 миллиметров из стали марки Ст3кп, Ст3пс и Ст3сп
  • А400. В зависимости от марки стали, Ст5пс и Ст18сп, диаметр бывает 6- 40 миллиметров. Из марок 18Г2С производят прутья диаметром равным 40-80 миллиметров.
  • А500. Делают профиль от 10 до 40 мм.
  • А600. Производят пруты толщиной 10- 40 миллиметров.
  • Ап600. 10-40 мм.
  • А800. Данную арматуру изготавливают диаметром от 10 до 32 мм.
  • А1000. Как и в предыдущем классе d=10-32 мм.
  • В500. От 3 до 16 мм.
Арматура класса А400
Арматура класса А400
Источник: https://grossteel.ru/

Индекс В означает, что арматура получена холоднодеформированным способом.

  • Вр500. Выпускают 3-5 миллиметров в диаметре.
  • Вр1200. d=8мм.
  • Вр1300. Производят 7 миллиметров в диаметре.
  • Вр1500. Выпускают диаметром 3 мм.
  • Вр1600. Встречается 3-5 миллиметров.

Индекс К интерпретируется как арматура канатная.

  • К1400. Производится d=15 мм.
  • К1500. d=6-18 мм.
  • К1600. Имеет размеры 6, 9, 11 ,12 ,15 миллиметров
  • К1700. Данный прокат выходит с размерностью 6-9 мм. в диаметре.
Арматура канатная
Арматура канатная
Источник: https://krasnodar.pulscen.ru/

По способу изготовления

  • Горячекатанная.
  • Холоднодеформированная
  • Канатная

Производство арматурного проката

Изготовление арматуры начинается на металлургических комбинатах. Там из железной руды с добавлением угля получают чугун. Далее чугун переплавляют в сталь, добавляя в исходное сырье легирующие элементы. Они придают стали заданные свойства. В качестве легирующих химических веществ используют: марганец- Г, кремний-С, хром- Х, никель-Н, молибден-М, вольфрам- В, селен-Е, алюминий- Ю, титан- Т, ниобий- Б, ванадий- Ф, кобальт- К, медь- Д, бор-Р, азот-А, цирконий- Ц. Буквенный индекс через дефис говорит об обозначении химического элемента в маркировке стали.

Затем расплав подается на машину непрерывного разлива. Сталь сливается в распределитель, подается в кристаллизатор, а оттуда в специальные желоба, где и охлаждается. Изначально заготовки для будущей арматуры имеют квадратное сечение. В таком виде сырье для получения арматуры храниться до момента, когда отправиться на металлопрокатный стан. Перед тем как начать процесс формирования арматуры, заготовки разогревают в печи для увеличения пластичности. Температура разогрева зависит от марки стали. Важно не перегреть, чтобы не ухудшить показатели твердости будущего изделия. Недогрев тоже нежелателен, так как усложняет процесс вытягивания. Разогретые бруски пропускают через систему валков. Каждый блок валков имеет меньший размер по сравнению с предыдущим. При этом происходит утончение и удлинение заготовки, и формирование круглого профиля. Так получают проволоку катанку, которая может служить самостоятельным изделием и являться материалом для дальнейшей переработки, и горячекатанную арматуру. На заключительном этапе протягивания на арматуру наносятся насечки. Предусмотрены кольцеобразные, серповидные и комбинированные. Насечки, они же ребра, нужны для лучшего механического сцепления арматуры и бетона.

Холоднодеформированную арматуру- проволоку получают прокаткой на специальном станке до заданного диаметра. Применяют для производства катанку из высокоуглеродистой и низкоуглеродистой стали. Холоднодеформированный прокат выпускают размером в диаметре от 3 до 16 миллиметров.

Канатная арматура. Наиболее эффективная напрягаемая арматура выпускается в виде канатов. Представляет собой закрученные по спирали вокруг центральной проволоки проволочные нити. В производстве первое место занимает канатная арматура из семи нитей, но существуют 3, 19 проволочные канаты и арматурные пучки, состоящие из продольных не свитых проволок или канатов.

Производство арматуры
Производство арматуры
Источник: https://ekb.pulscen.ru/

По типу профиля

  • Гладкий. На поверхности изделия отсутствуют ребра. Пример гладкого профиля арматура А240
  • Периодический. На поверхность изделия в процессе производства наносятся насечки перпендикулярно или под углом к продольной оси. Ребро на пруте арматуры отстоит от другого на одном и том же расстоянии, называемом периодом, по всей длине изделия. Отсюда происходит название ребристопрофильной арматуры- периодическая.
Арматура с гладким профилем
Арматура с гладким профилем
Источник: http://www.cstg-metal.ru/

По условиям эксплуатации

  • Ненапрягаемая. Ненапрягаемая арматура предназначена для формирования сеток, пространственных каркасов, армированных поясов в обычном состоянии.
  • Напрягаемая. Применяется для производства предварительно напрягаемых железобетонных конструкций. Как известно, бетон чувствителен к усилиям растяжения и провисания. Для того чтобы нивелировать эти нагрузки бетону необходимо придать расчетное предварительное сжатие. Сжимающее усилие бетону придает напрягаемая арматура. Напряжение арматуры основано на том, что предварительно растянутый металл после снятия напряжения стремиться принять прежнюю первоначальную форму, то есть сжаться. Но если при этом арматурный материал обжат бетоном, то нагрузка сжатия передается на всю железобетонную конструкцию. Напрягают арматуру механическим, электротермическим, электромеханическим способом.

При механическом напряжении арматуру растягивают до расчетного значения винтовыми или гидравлическими домкратами.

При электротермическом способе под воздействием электрического тока происходит нагрев до 300-3500 С. За счет нагрева металл расширяется. Нагретую арматуру до охлаждения помещают между упорами, препятствующими ее укорачиванию. В процессе понижения температуры в прутах или канатах возникают растягивающие напряжения. Напряженную арматуру заливают бетоном и, после затвердения снимают напряжение. Сжимающая нагрузка передается на бетон за счет анкеров, которые закреплены на противоположных концах прутов арматуры, либо при помощи механического сцепления бетона за ребра арматурного прута. Электротермический способ хотя и менее трудоемок, но не обеспечивает точности соблюдения заданных параметров.

Электромеханический вобрал в себя технологические операции электротермического и механического способов растяжения.

Еще одним способом создания преднапряженных конструкций является способ натяжения на бетон. Заключается он в следующем. Перед заливкой бетонного раствора в форму помещают пластиковую трубу в расчетном месте. После застывания и вынимания трубы в массиве образуется канал. В него прокладывают арматуру и напрягают обычным способом. Затем канал бетонируют, анкеруют концы прутьев. Таким способом строятся длинномерные конструкции. Например, мосты. Натяжение на бетон позволяет прочно и надежно соединить сегменты пролета моста.

В настоящее время набирает популярность технология производства бетона на напрягающих цементах. Суть заключается в том, что бетон на напрягающем цементе во время затвердевания расширяется и растягивает арматуру. Так как арматура препятствует свободному расширению бетона, в массиве возникает сжимающее напряжение.

Напряжение арматуры при производстве ЖБИ
Напряжение арматуры при производстве ЖБИ
Источник: https://smolensk.gbipkf.ru/

Композитная арматура

Арматура из композитных материалов получает все большее распространение. Композитная арматура производится:

  • Стеклокомпозитная. Производится из тончайших нитей стекловолокна.
  • Базальтокомпозитная. Выпускается из предварительно расплавленного природного материала базальта
  • Углекомпозитная. Сырьем для производства служит углеволокно, состоящее из углеродных нитей.
  • Арамидокомпозитная. Состоит из полиамидных волокон, которые обеспечивают высокую механическую прочность. Известно под торговой маркой «Кевлар».

Принцип производства сводится к тому, что расплавленное сырье вытягивается в нити на фильерных машинах и скрепляется в жгуты полимерной органической смолой. Выпускается толщиной от 4 до 32 мм. гладкой и рифленой фактуры. В зависимости от диаметра производится в бухтах – до 8мм, в прутах- при диаметре от 8 миллиметров. Получила широкое распространение в дорожном строительстве, в строительстве бассейнов; армировании фундаментов при частном строительстве и прочих ненагруженных фундаментов; в бетонных конструкциях, где есть угроза возникновения коррозии; при создании пешеходных и велосипедных дорожек; формировании арм. пояса в кирпичной или блочной кладке; устройстве отмосток вокруг зданий.  

Базальтокомпозитная арматура
Базальтокомпозитная арматура
Источник: https://imperiyast.ru/

Сравнение стальной и композитной арматуры

Оба вида имеют свои достоинства и недостатки. Нельзя однозначно выделить какой-либо материал в лидеры по всем критериям. Для каждой конкретной задачи применима определенная арматура. Правильный выбор с экономической и технологической точки зрения может быть сделан только после грамотных проектных расчетов.

К плюсам стальной арматуры относится:

  • При необходимости может соединяться методом сваривания. Этот момент важен если необходимо придать каркасу жесткость.
  • Можно гнуть под любым углом на строительной площадке. В зависимости от конфигурации бетонного изделия стальная арматура способна повторить контур и при сгибе не создает напряжения в сторону разгибания. Значимый фактор, так как в углах стен и фундаментах не допускается прерывистость прутьев. Композитная арматура не способна сгибаться под углом в 90 градусов. При сгибе возникают силы, стремящиеся вернуть прут в исходное положение. Изогнутые композитные элементы арматуры можно заказать только на заводе. Согласно техническому заданию, их изготовят в нужном количестве
  • Подходит для монолитного строительства многоэтажных зданий
  • Есть возможность напряжения. Преднапряженные бетонные элементы хорошо работают на прогиб, обладают повышенной трещиностойкостью. За счет повышенной прочности есть можно уменьшить сечение изделия без снижения прочностных характеристик, поэтому требуется меньше расход бетона и стали.
  • Обладает токопроводностью, это позволяет производить электропрогрев бетона в условиях низких температур. Свойство стальной арматуры проводить электрический ток полезно для создания системы заземления и молниеотведения. Композитная арматура, из-за физических характеристик непригодна для выполнения таких задач.
  • Огнестойкость. Стальная арматура начинает приобретать избыточную пластичность и терять свои несущие свойства при 6000С. И в этом ее серьезный плюс. В то время как композитная размягчается при 250-3000 С. Нарушение арматурного каркаса может привести к обрушению здания.
  • Простота работы на строй площадке. Со стальной арматурой привычно и просто работать в полевых условиях, соблюдая минимальные требования безопасности. При работе с композитными материалами, нужно надежно защищать кожу и слизистые и дыхательные пути от попадания органической пыли.

Достоинства композитной арматуры

  • Невысокая стоимость. Производство полимерной арматуры значительно дешевле стальной.
  • Коррозийная стойкость. Композитные материалы не подвержены коррозии, в то время как стальную арматуру необходимо защищать от прямого воздействия воздуха и влаги. Все виды пластиковой арматуры можно применять холодных в условиях, когда в бетон добавляют антиморозные добавки. Стальная арматура в бетоне с добавками активно коррозирует.
  • Низкий коэффициент теплопроводности. Благодаря этому свойству исключается образование мостиков холода. Расширение при охлаждении сопоставимо с показателями расширения бетона, поэтому не происходит отслоения арматуры и трещин в толще бетона.
  • Диэлектрические качества. Являются плюсом композитной арматуре при строительстве зданий и помещений, где присутствие посторонних электромагнитных полей нежелательно. Это исследовательские и центры МРТ, радиотехнические лаборатории и так далее.
  • Простота транспортировки.  Композитная арматура легче стальной в 5 раз. Продукция малого сечения, до 8 миллиметров сворачивается в бухты. Поэтому нет необходимости в специальном длинномерном транспорте для перевозки. Для частного домостроения пластиковую арматуру можно привезти на личном транспорте.
  • Высокая удельная прочность. Прочность композитной арматуры выше прочности стальной примерно в 3 раза. Но композитные материалы уступают стали по модулю упругости. Это говорит о том, что армировать нагруженные объекты ни стекалопаластиковой, ни базальтопластиковой, ни прочими видами органических арматур нельзя. Композитная продукция не подходит для изготовления предварительно напряженных конструкций, потому что имеет огромные потери напряженности с течением времени. То есть со временем, в течение 5-7 лет в органической арматуре теряется усилие сжатия, и напряженность бетона резко снижается. При сохранении внешней нагрузки бетон начнет трескаться и крошиться.
Арматурные работы
Арматурные работы
Источник: https://arbuild.ru/

Ориентируясь на приведенные преимущества, невозможно однозначно сказать: какая арматура лучше, надежнее, практичнее. Однозначно формируется вывод, что для каждого вида есть своя область применения. Стальную арматуру оправданно использовать в преднапряженных объектах: балках, фундаментных блоках, перекрытиях. И в ненапряженных изделиях: ленточных фундаментах, набивных фундаментах, плитных основаниях, колоннах, несущих конструкциях. Композитную рационально применять для усиления кладки, для фундаментов частного малоэтажного строительства на твердых, не пучинистых грунтах, при условии неразрывности армирования углов; для неответственного армирования: лестничных маршей, не несущих колонн, чаш бассейнов. При выборе арматуры важно опираться на обоснованное мнение проектировщика, подкрепленное расчетами показателей и характеристик, взятых из СП и СНиП.


ИСТОЧНИК ФОТО: http://www.voronezh-metalloprokat.ru/


Обмазочная гидроизоляция: практично и надежно


05.04.2021 15:34

Гидроизоляция обмазочными материалами - один из самых доступных способов защиты гражданских и промышленных конструкций от влаги. Она может задействоваться при проведении как наружных, так и внутренних работ. Современные технологии помогают улучшать характеристики обмазочных гидроизоляционных материалов и расширяет область их применения.


Обмазочные гидроизоляционные материалы – это специальные смеси, в основе которых битум, полимеры, цемент и их сочетание. Обмазочная гидроизоляция имеет высокий показатель удержания влаги, паронепроницаемости, долговечности и т.д. На отдельных ее достоинствах заострили внимание эксперты.

Максимальная герметичность

По словам менеджера по продукту «Гидроизоляция» Master Builders Solutions, ООО «МБС Строительные системы» Дмитрия Лупанова, в определении «обмазочная гидроизоляция» уже заложен принцип её применения и действия. Данный вид гидроизоляции наносится на изолируемую область ручным или механизированным способом и приобретает сцепление со всей площадью поверхности. Этим она отличается от многих гидроизоляционных материалов свободной раскладки (ПВХ, ТПО, ЭПДМ и пр. рулонные мембраны). За счёт сцепления с поверхностью и отсутствия швов обмазочная гидроизоляция обеспечивает высокую степень надежности и снижает риски распространения воды по контакту между конструкцией и изоляционным слоем.

Технический директор ООО «РЕММЕРС» Сергей Шибаев отмечает, что обмазочная горизонтальная гидроизоляция, в отличие от инъекционной, делается исключительно на этапе строительства. Основная ее задача – предупреждение капиллярного подсоса влаги, который может достигать высоты до нескольких метров от уровня грунта. Создавая непроницаемый барьер между фундаментом и стеной здания, предотвращается подъем влаги по пористой структуре строительного материала, что особенно важно при строительстве объектов из кирпича, дерева и газобетона. «Традиционно в России для этой цели используют рулонную гидроизоляцию на битумной или битумно-полимерной основе, не принимая в расчёт надежность, долговечность и эксплуатационные характеристики. Но рулонная гидроизоляция создает в сечении стены зону с пониженной стойкостью к сдвигающим нагрузкам. Выступающие края рулонного материала затрудняют отделку цоколя, а также необходимый нахлест листов утолщает размеры шва в данной области. Поэтому качество рулонной отсечной гидроизоляции в значительной мере зависит от аккуратности и тщательности выполнения работ, а также от качества самого рулонного материала»,-  подчеркивает Сергей Шибаев.

Стоит добавить, что в настоящее время обмазочную гидроизоляцию активно задействуют и на бытовом уровне. Как рассказывает специалист по связям с общественностью ООО «Крепс» Надежда Цыпкина, на данный момент при гидроизоляции санузлов в многоквартирном доме очень часто применяют акриловую гидроизоляцию. «Её особенность в том, что она абсолютно не впитывает воду и поверхность после обработки получается очень гладкая, дальнейшая обработка (оштукатуривание или облицовка) возможна только очень дорогими материалами, содержащие большое количество полимерных добавок в составе. В свою очередь гидроизоляции на основе цемента имеют в составе песок, за счёт которого обработанная поверхность обладает достаточной шероховатостью, поэтому к материалам для дальнейших отделочных работ не предъявляется особых завышенных требований»,- отмечает эксперт.

Критерии выбора

При выборе обмазочной гидроизоляции следует ориентироваться на четыре важных критерия, подчеркивает Дмитрий Лупанов. Первый - это тип сооружения, где будет задействована гидроизоляция и сама гидроизолируемая зона. А именно - учитывается само инженерное решение. Соответственно, внешняя гидроизоляция стен фундамента здания или внутренняя гидроизоляция резервуара формируют разный набор требований к материалу. Зона гидроизоляции, финишное покрытие в цокольной части здания или межслойная изоляция между стяжкой и плитой перекрытия подземного паркинга также влияют на его выбор.

Второй критерий выбора того или иного гидроизоляционного материала – это его условия эксплуатации и ожидаемый срок службы. Тут учитываются тип воздействия воды (капиллярная влага из основания или напорная вода влияют на изоляционные свойства материала); механические воздействия на поверхность изоляции при эксплуатации на прочность сцепления, прочность при разрыве, абразивную стойкость; перепады температур или циклические динамические нагрузки, влияющие на способность к перекрытию трещин (эластичность), паропроницаемость и т.д.

Третий важный критерий, продолжает Дмитрий Лупанов, – это простота или сложность применения материала. Скорость его нанесения, продолжительность межслойной сушки, время до введения в эксплуатацию и т.д. Четвертый фактор – экономический. Необходимо учитывать исходную стоимость материала и трудозатраты при применении, а также – межремонтные сроки службы и стоимость ремонта.

В контексте применения обмазочных гидроизоляционных материалов на бытовом уровне потребителям также важно соблюдать вполне простые правила. «Возможные промахи - такие же, как при выборе любого строительного материала. Всегда важно заранее правильно замерить помещение, знать, на какое основание что вы наносите, что планируете делать дальше и внимательно читать инструкцию. При всех сомнениях лучше до покупки проконсультироваться у производителя через сайт или горячую линию, он поможет все сделать правильно и предотвратить будущие ошибки, последствия которых испорченный новый ремонт и проблемы с соседями»,- делает выводы Надежа Цыпкина.

Активное развитие

Как отмечает Дмитрий Лупанов, обмазочная гидроизоляция – тип изоляции, который был изобретен самым первым. «Несмотря на это, направление всё ещё очень активно развивается. Например, в области полимецементных мембран мы достигли новой планки с материалом MasterSeal 6100 FX в технологичности (сократился срок введения в эксплуатацию до 3 дней) и в надёжности: повысилась адгезия до 2 МПа, перекрытие трещин до 2 мм, стойкость к постоянному давлению воды до 5 бар. Общий срок службы достиг 80 лет»,- добавляет он.

Действительно, отмечает Сергей Шибаев, современный уровень развития строительной химии дает новые возможности в этой области. Основываясь на принципе долгосрочной надежности, компания Remmers рекомендует эластичную обмазочную гидроизоляцию для выполнения горизонтальной отсечки. Наиболее популярным решением является полимерцементная гидроизоляция Remmers MB 2K. Она удобна и строителю, так как наносится быстро (время полимеризации от 9 часов) и владельцу здания, так как имеет чрезвычайно высокую стойкость к сжимающим нагрузкам, высокую адгезию ко всем строительным материалам (включая битумные основания, пластик и металл), что гарантирует длительный срок службы без снижения эффективности.

«Важным критериев для выбора материала является и его эластичность, так как подвижки и усадка фундамента неизбежны в новом строительстве. Применяя гидроизоляционную обмазку MB 2K как для гидроизоляции фундамента, так и для горизонтальной гидроизоляции можно быть совершенно спокойным за ее целостность, так как она имеет практически уникальный параметр перекрытия трещин в своем классе – при ширине раскрытия до 3 мм»,- подчеркнул представитель компании Remmers.


ИСТОЧНИК ФОТО: https://k-dom74.ru