Борьба с наледями на крышах: проблема и способы ее решения

Каждую снежную зиму в нашем городе наблюдаются падения наледей с крыш домов. Иногда это приводит к травмам пешеходов, а в ряде случаев, к сожалению, еще и к трагическим последствиям. В чем причина образования наледей на крышах зданий и как ее решить? Этим двум актуальным для города вопросам и посвящена настоящая публикация, а также описаны три способа ее решения.
С точки зрения опасности образования наледей и сосулек наиболее проблемными в Санкт-Петербурге являются дома со скатной крышей и холодным чердаком, в котором нарушен температурно-влажностный режим (далее — ТВР). В Санкт-Петербурге очень много таких зданий, особенно в историческом его центре. Соответственно, каждую снежную зиму в таких домах возникает проблема образования и падения наледи с крыши. Проблема тем более острая и значимая, чем больше выпадает за зиму снега. От падения наледи могут пострадать не только пешеходы, но и оказаться поврежденными припаркованные автомобили.
Основной причиной образования наледей на скатных крышах является нарушение ТВР в неотапливаемых чердачных помещениях. Низкий уровень теплоизоляции ограждающих конструкций, отделяющих холодный чердак от отапливаемых помещений, и трубопроводов отопления, проложенных в неотапливаемых чердачных помещениях, а также недостаточный воздухообмен чердачных помещений (ввиду отсутствия вентиляционных продухов в конструкции крыши) в совокупности приводят к повышению температуры воздуха на чердаке, который в таком случае перестает быть холодным. На улице снег и отрицательная температура, а на чердаке — устойчивый плюс, т. е. чердак становится условно теплым. Снизу кровельного покрытия появляется, таким образом, источник теплоты. Из-за этого происходит нагрев кровельного покрытия и таяние снега на теплых участках крыши. При этом температура на поверхности карнизного свеса крыши остается отрицательной. Вода стекает по теплому участку крыши и, достигая карнизного свеса, замерзает на нем, образуя на крыше ледяную дамбу (см. рисунок).
Дальнейшее действие накопленной за гребнем ледяной дамбы воды в рамках суточного колебания наружной температуры приводит к наращиванию тела ледяной дамбы, перелив или просачивание стекающей через дамбу воды с формированием свисающих с крыши наледей (сосулек), представляющих угрозу жизни и здоровью прохожих. И чем больше на крыше снега, тем большими могут оказаться последствия от таяния снега и стекания к карнизному свесу воды.
Следовательно, для решения обозначенной проблемы требуется комплекс мер, а именно: утепление всех ограждающих конструкций, отделяющих чердак от отапливаемых помещений, изоляция проложенных на чердаке трубопроводов системы отопления и обеспечение проветривания чердака, что достигается устройством в конструкции крыши специальных вентиляционных продухов или окон. То есть чердак должен стать по-настоящему холодным, чтобы разность температур в нем оказывалась не более чем на 2–4 ºС выше текущей температуры наружного воздуха. Многие замечали, что на крышах неотапливаемых зданий снег может лежать при отрицательной температуре наружного воздуха сколь угодно долго и не таять. Все потому, что в пространстве под кровлей устанавливается тоже отрицательная температура. Если нет источника теплоты, нет таяния снега, значит, нет и влаги, стекающей по уклону и намерзающей в холодной зоне крыши. Это так называемый пассивный метод борьбы с наледями. Рекомендации по его практической реализации содержатся в региональном методическом документе РМД 23-27-2017. В данном документе подробно показано, какие материалы и технические решения следует применять для нормализации ТВР на чердаках, какую толщину слоя теплоизоляции при этом использовать, показаны практические примеры расчета. Реализация предложенных в РМД 23-27-2017 технических мер позволит снова сделать чердак холодным и тем самым значительно снизить риски образования наледей на крыше.
Второй способ решения данной проблемы, назовем его условно активным, — это монтаж нагревательного кабеля или нагревательной ленты в местах возможного образования наледей на крыше. К таковым в первую очередь относятся карнизные свесы и элементы водосточной системы (желоба, воронки, водосточные трубы). В периоды выпадения снега электрические элементы системы снеготаяния включаются, нагреваются и растапливают таким образом снег на карнизных свесах и в водосточной системе. Такой способ называется активным, т. к., помимо начальных капитальных затрат, требует еще и расходов электрической энергии при включении, а следовательно, к начальным инвестициям зимой добавляются еще и эксплуатационные затраты. В нашем городе также утверждены методические рекомендации по его реализации (см. РМД 31-09-2010).
Оба способа по начальным капитальным инвестициям примерно сопоставимы по величине, но по эксплуатационным затратам активный способ, конечно, более обременителен финансово. Поэтому активный способ борьбы с наледями в основном выбирают коммерческие или крупные бюджетные организации, у которых имеются, во-первых, резерв электрической мощности и, во-вторых, денежные средства для его реализации и последующего содержания. Жители многоквартирных домов, как правило, не готовы нести дополнительные финансовые затраты для того, чтобы у них на крышах не было сосулек. Поэтому в многоквартирных домах чаще реализуется пассивный способ борьбы с наледью — так называемый «холодный чердак», когда один раз производится утепление чердачного перекрытия, других ограждающих конструкций, отделяющих чердак от отапливаемых помещений, изолируются трубопроводы системы отопления, а также в рамках капремонта крыши устраиваются вентиляционные продухи и отверстия, и тем самым на ближайшие 25–30 лет (до следующего капремонта крыши) эксплуатационные затраты заключаются только в поддержании элементов крыши и чердака в техническом состоянии, соответствующем действующим нормам и правилам эксплуатации жилищного фонда.
При реализации активного способа борьбы с наледями следует также иметь в виду, что при таянии снега на крыше и в водосточной системе стекающая вода будет замерзать на тротуаре. То есть наледь с уровня крыши будет перемещаться на уровень пешеходной части тротуара или придомовой территории, что тоже несет в себе риски получения травмы прохожими. Риски, конечно, менее существенные по сравнению с падением ледяной глыбы с крыши, но тоже вполне реальные и потенциально травмоопасные.
Есть еще и третий способ борьбы с наледями на крышах — так называемый «лопатный», когда в периоды интенсивных снегопадов на крышах зданий появляются специально подготовленные кровельщики, которые лопатами и ломами убирают снег с крыш. Это, наверно, наименее затратный способ борьбы с наледью, но не очень надежный. Потенциально опасных с точки зрения падения наледей домов в городе много (в 2016 году по данным ГАТИ таких домов насчитывалось более 6,5 тысячи: https://www.dp.ru/a/2016/11/09/Smolnij_naschital_v_Peter), а технически подготовленных кровельщиков — ограниченное количество. Они физически не смогут одновременно обслужить все потенциально опасные объекты. Кроме прочего, при сбивании наледи с крыши часто происходит повреждение кровельного покрытия. Впоследствии это приводит к ускоренному износу кровельного покрытия, протечкам, загниванию элементов стропильной системы и, как следствие, к необходимости более частого ремонта конструктивных и ограждающих элементов крыш. Поэтому вопрос экономии тут может оказаться весьма относительным. Да и крупных снегопадов в течение одного отопительного сезона может случиться несколько. Конечно, как показала зима 2019/2020 гг., бывают зимы бесснежные. В этом случае проблема наледей решается как бы сама собой. Но практика последних лет показывает, что каждые 5–8 лет в нашем городе могут происходить сильные и длительные снегопады. Потому рассчитывать на то, что зима окажется бесснежной, не стоит. Это такой бонус от природы, который реализуется, к сожалению, далеко еще не всегда.
Мнение
Илья Зинченко, генеральный директор компании «Теплокарбон»:
Для эффективной борьбы с обледенением и возникновением сосулек на скатных крышах Петербурга, а также обеспечения безопасности горожан на тротуарах зимой необходимо в первую очередь выработать инженерный стандарт обслуживания кровель и водосточных систем. Это позволит избежать повреждения крыш от действий непрофессиональных альпинистов, которые выходят на них в зимний период, и от других посторонних вмешательств.
Далее нужно тщательно подготовить крышу: сделать теплый чердак холодным, для того чтобы не было теплопотерь, очистить и отремонтировать водосточную систему — вода с крыши должна беспрепятственно достигать люка на тротуаре.
После этого можно приступать к «апдейту» кровли: установить на нее систему антиобледенения на основе греющих элементов. Это может быть либо греющий кабель, либо более современная инфракрасная греющая лента. Как показывает практика, она является более надежным инструментом. Во-первых, для монтажа такой ленты не нужно делать отверстий в крыше для крепления, в отличие от греющего кабеля. Таким образом, не нарушается ее целостность. Во-вторых, работа греющей ленты шириной 10 см и мощностью 30 Вт на погонный метр оказывается эффективней: кабель монтируется «зигзагами» и не всегда плотно прилегает к поверхности кровли. Греющая лента с профессиональным бутилкаучуковым скотчем устанавливается в один погонный метр и работает только там, где это действительно необходимо, говоря проще, не греет воздух. В-третьих, в системе антиобледенения на основе греющей ленты предусмотрена возможность удаленного контроля и управления. Она делает удобным включение/выключение, сигнализирует оператору в случае поломки, а также позволяет минимизировать затраты на расход электроэнергии. Для того чтобы система антиобледенения работала еще более надежно, рекомендуется устанавливать снегозадержатели.
Следующий шаг в борьбе с наледью — заключение сервисного контракта с обслуживающей компанией. На наш взгляд, сервисно-контрактное обслуживание кровельной водосточной системы в будущем должно стать нормой по аналогии с противопожарной и вентиляционной системами.
Если последовательно выполнять эти шаги, уже в ближайшем будущем проблема надели и сосулек на крышах Петербурга будет решена — инновационно, комплексно и дистанционно.
Основная задача системы антиобледенения — безопасность горожан. Эксплуатация зданий находится на втором плане. Поэтому пока нет единого мнения по поводу того, кто должен оплачивать эту часть городской инфраструктуры. Одни считают, что установку таких систем должны оплачивать сами жильцы, кто-то выступает за то, чтобы этим занимался город. Производственные, монтажные и сервисные компании предлагают массовое внедрение таких инноваций. Тем более что в дальнейшем стоимость таких систем существенно снизится.
Пока же все зависит от подхода конкретной управляющей компании. Все чаще УК в Петербурге готовы к системному подходу в борьбе с наледью, поскольку это не только повышает безопасность жителей, но и гораздо выгоднее, чем ежегодный ремонт пробоин, которые остаются после непрофессиональных чистильщиков.
Александр Дадченко, председатель правления Национального кровельного союза:
Правильно построенная или правильно отремонтированная крыша не только не доставляет жильцам дома каких-либо неудобств — они просто даже не задумываются о том, как и из чего она построена. Есть крыша, работает — и хорошо.
Если крыша напоминает жильцам о себе ежегодными сезонными протечками, ограждениями у фасадов и предупреждениями об опасности, требует средств на очистку от снега и наледей, то эта крыша — либо результат ошибки проектировщиков и/или строителей, либо жертва неквалифицированной эксплуатации.
Причем сбрасывание снега с крыши — это только верхушка айсберга проблем, затрат и опасностей, которые принесет она своим хозяевам. Постоянные сезонные протечки, кроме значительного дискомфорта для жильцов верхних этажей, разрушают части стен и фасадов здания. А это значит, что весомый кусок отсыревшей зимой штукатурки может упасть в любой момент, в любое время года. Кроме того, проживание в вечной сырости влажных стен здоровья и долголетия никому еще не приносило.
Перечисленные в статье причины и способы решения проблемы указаны верно, и каждый вправе выбрать, каким путем ему идти. Хочу только заметить, что для любого вмешательства в конструкцию здания в целом и в крышу в частности — будь то ремонт, реконструкция или переоборудование — требуется квалифицированное проектное решение и квалифицированные специалисты для его реализации. Экономия средств на обследовании и проектировании, а также необоснованная экономия при выборе исполнителей для ремонта или строительства практически сведут на нет все затраты на попытку привести крышу дома в нормальное, стабильно работоспособное состояние.
МАТЕРИАЛЫ ПО ТЕМЕ:
Пароизоляция — с чего начинается теплая кровля
BIM или не BIM — уже не вопрос

В декабре на сайте ФАУ «ФЦС» в тестовом режиме заработал классификатор строительной информации (КСИ), необходимый для унификации информационных моделей объектов капитального строительства. Запуск классификатора призван ускорить процессы цифровой трансформации строительной отрасли. О том, как продвигается внедрение BIM-технологии, рассказывают разработчики ПО и пользователи.
Как сообщает Минстрой России, к тестированию КСИ привлечены ведущие разработчики программного обеспечения для работы с BIM-моделями, в частности, Renga Software, дочернее предприятие «АСКОН» и «1С». В данный момент разработчики системы отлаживают программное взаимодействие Renga с КСИ, оценить возможности которого смогут пользователи системы Renga. Запуск классификатора будет способствовать исключению ошибок при проектировании и проведению автоматизированных проверок проектов, позволит интегрировать многочисленные информационные системы, которые используются на стадии создания и эксплуатации объекта строительства. КСИ внедряется в программное обеспечение, и за счет этого все участники инвестиционно-строительного процесса получают возможность общаться на одном языке на уровне систем.
Успешный опыт
Тестирование КСИ стало продолжением сотрудничества компании Renga Software с ФАУ «ФЦС». Ранее, в 2019 году, компания приняла участие в пилотном проекте по прохождению экспертизы в формате BIM-модели. Минстрой России поставил задачу изучить возможность проведения госэкспертизы напрямую по информационной модели, созданной в российском программном продукте, без использования проектной документации.
Объектом, выбранным для прохождения экспертизы, стала общеобразовательная школа на 1000 мест в Чкаловском районе Екатеринбурга. Проектная документация школы к тому моменту уже была выпущена и прошла экспертизу. Предстояло создать BIM-модель по ранее принятым техническим решениям с целью разобраться в нюансах работы экспертизы с информационными моделями и понять, какие требования необходимо заложить в нормативно-технические документы.
Итоговая цифровая информационная модель Renga содержала следующие разделы: архитектура, конструкции, вентиляция, отопление, водоснабжение и водоотведение, электрические сети и технологические решения. Цифровая модель местности была выполнена в продуктах «Кредо-Диалог». Готовая модель в формате IFC была загружена в систему управления инженерными данными «Неосинтез». Эта система выступала в качестве макета рабочего места эксперта, в котором он мог просматривать сводную модель и настраивать правила проверки. Именно модель в формате IFC проходила проверку соответствия требованиям.
Над данным проектом работали восемь специалистов, и они создали информационную модель школы за несколько месяцев. Благодаря тесному взаимодействию с разными подразделениями госэкспертизы удалось собрать воедино их требования к информационным моделям, и они были учтены при реализации нового функционала. В частности, в нескольких релизах 2020 года система Renga развивала поддержку международного формата обмена данными IFC4 и настройку экспорта. Теперь при выдаче проекта в виде IFC-модели могут исполняться требования не только госэкспертизы, но и других возможных потребителей информационной модели.
Стандартизация цифровизации
Участие российских разработчиков программного обеспечения в работе по стандартизации требований к информационным моделям и созданию нормативно-технической базы BIM-технологии продолжается в рамках деятельности подкомитета 5 «Технология информационного моделирования зданий и сооружений» технического комитета 465 «Строительство» при Минстрое России. «Наша компания, как один из участников подкомитета, привлекается в качестве консультанта к обсуждению проектов ГОСТов, стандартов, сводов правил, — рассказывает Максим Нечипоренко, заместитель генерального директора Renga Software. — Мы также участвуем в заседаниях рабочей группы при Правительстве Санкт-Петербурга по внедрению технологий информационного моделирования в строительном комплексе Санкт-Петербурга».
Формирование нормативной базы для использования технологий информационного моделирования (ТИМ) находится на завершающем этапе, в связи с этим летом 2020 года Правительством РФ было объявлено, что переход на обязательное применение цифровых моделей объектов в сфере государственного заказа должен произойти не позднее 2021 года.
Будущее уже сегодня
«Проект постановления Правительства, утверждающего перечень случаев, в которых применение информационного моделирования будет обязательным, уже подготовлен и проходит последние согласования. Как только документ выйдет, ни один из объектов перечня, а речь идет в основном об объектах социальной инфраструктуры со стоимостью строительства свыше 500 млн рублей, не сможет быть построен без BIM-технологии, — поясняет Максим Нечипоренко. — Поэтому говорить о технологиях информационного моделирования как о грядущем будущем уже не приходится. Теперь это реальность».
Готова ли к уже свершившемуся переходу строительная отрасль? По словам Максима Нечипоренко, игнорировать пункт договоров, в котором говорится о необходимости предоставить модель объекта, теперь уже не представляется возможным. Потратив время и ресурсы на создание проекта традиционным способом, проектировщику придется создавать модель и тратить на это дополнительные ресурсы, и это может объяснять повышение стоимости проектирования. «Регулярные примеры — когда компания декларирует себя как предприятие, где налажено BIM-проектирование, а на поверку оказывается, что в BIM-отделе работает 5–7 человек, а вся остальная структура проектировщиков по-прежнему продолжает чертить. В итоге BIM-отдел по чертежам создает модель, что удорожает стоимость проектирования, — объясняет эксперт. — При этом есть масса положительных примеров, которые свидетельствуют: когда проектировщики сразу начинают делать проект с модели и затем из модели делают чертежи, это облегчает работу и уменьшает затраты».
Опытом применения BIM-системы делится Николай Дубовой, директор ООО «ПСК-Регион»: «В процессе реализации пилотного проекта в системе Renga мы смогли убедиться, что BIM — это несложно и недорого. Мы довольны полученным опытом 3D-проектирования и уровнем отечественной BIM-системы. Renga позволила нам создать полноценную 3D-модель от фундамента до розеток. Наглядность BIM-проектирования помогла избежать коллизий и нестыковок в проекте. Планируем реализовывать в Renga и другие наши проекты».
Панорамное остекление – популярное и энергоэффективное

Высокие теплопотери при больших площадях остекления долгое время сдерживали увеличение оконных проемов или, как минимум, делали его «удовольствием для богатых». Развитие технологий в корне изменило ситуацию.
Сегодня большие окна и даже панорамное остекление стали не только технологически осуществимы, но и экономически доступны – как при многоэтажном строительстве, так и в частном домостроении. Благодаря чему это теперь возможно, рассказывают эксперты, опрошенные ASNinfo.
Мейнстрим
Рост площади остекления стал мейнстримом, единодушно считают эксперты. «Этот тренд начался с коммерческих объектов – деловых и торговых центров, а сейчас весьма актуален и для многоквартирных домов, и для индивидуального жилищного строительства», - отмечает заместитель коммерческого директора «Татпроф» Алексей Тарасов.
По его словам, если раньше шло остекление только окон и балконов, то сейчас активно практикуется структурное остекление, позволяющее создать идеально ровный фасад и обеспечить высокие эстетические характеристики даже обычного жилого дома сегмента масс-маркет. «Также все большее распространение получает панорамное остекление. При этом несущие конструкции становятся все тоньше, визуально незаметнее. Эта тенденция также позволяет улучшить восприятие объекта, но перед производителями систем ставят важную задачу по обеспечению необходимых прочностных характеристик несущих конструкций», - говорит эксперт.
«Современные проекты в архитектурном стиле hi-tech, как правило, предусматривают панорамные окна. Данная концепция диктует архитектурную моду как в мегаполисах (небоскребы, офисные здания, аэропорты, культурно-развлекательные центры), так и в частном домостроении. Причем для любой климатической зоны возможен свой вариант панорамных окон, который позволит не только предотвратить потери тепла, но и сократить их за счет солнечной энергии», - отмечает Александр Батаев, коммерческий директор ООО «Системные конвекторы» (правообладатель Möhlenhoff в России).
С этим согласна и генеральный директор АО «Фирма Изотерм» Виктория Нестерова. «Проектируются и строятся здания, у которых площадь остекления достигает 70-80% от общей площади ограждений. Панорамное остекление фасадов используется для облицовки различных БЦ, ТРК и административных зданий. Самыми широкими темпами, с точки зрения использования панорамного остекления, растет сегмент жилищного строительства. Первый запрос от покупателей жилья уровня от бизнес-класса: есть ли панорамные окна?», - констатирует она.
По данным директора по стратегическому маркетингу и PR-коммуникациям ООО «Декенинк Рус» Вячеслава Ганцева, в настоящее время в многоквартирных домах в среднем площадь оконных конструкций составляет около 16% от жилой площади дома (без учета так называемого «холодного» алюминия). «В секторе ИЖС этот показатель еще выше – два-три года назад он был около 17%, а сейчас достигает примерно 19%. И нет сомнений, что эта тенденция сохранится», - уверен он.
Сберечь тепло
Как не сложно догадаться, ключевой проблемой, ранее препятствовавшей широкому распространению крупноформатного остекления, был высокий показатель теплопотерь, связанный несовершенством оконных конструкций. Они обладали значительно более высокой теплопередачей, чем стеновые материалы. И поддержание в помещениях комфортного температурного режима стремительно повышало расходы на отопление. Сегодня эта проблема в целом решена: современные производители светопрозрачных конструкций предлагают продукцию с высокими показателями теплоизоляции.
«Вопрос повышения энергоэффективности оконных систем очень актуален. Тарифы оплаты отопления с каждым годом растут и, безусловно, в российских климатических условиях возможность сбережения энергии – очень важный фактор. Поэтому производители светопрозрачных конструкций уделяют этому вопросу немало внимания», - рассказывает Алексей Тарасов.
По его словам, в этом вопросе конструкторская мысль идет по двум направлениям. «Первый – использование все более эффективных теплоизоляционных материалов – вспененного полиэтилена, полиамидов, композитов – из которых изготавливают термовставки и уплотнители. Второй – увеличение толщины заполнения, что дает тот же результат, так сказать, экстенсивным путем. Также практикуется заполнение стеклопатеков инертными газами, которые также обладают низким уровнем теплопроводности», - говорит специалист.
Эксперты считают, что сегодня высокий уровень теплоизоляции обеспечивают как алюминиевые, так и ПВХ-системы. «Алюминий один из самых надежных вариантов исполнения панорамного остекления, с его помощью сегодня легко реализовать массивные окна, раздвижные двери более 3 м в высоту и стеклянные фасады. Исследования доказали, что алюминиевые фасадные системы имеют срок службы не менее 75 лет», - рассказывает директор филиала Reynaers Aluminium Rus в СЗФО Сергей Колосов.
По его словам высокие теплоизоляционные свойства конструкций достигаются благодаря использованию современных термомостов из инновационного материала норил (твердый, упругий при изгибе, сверхпрочный, стабильный в размерах, износостойкий пластик, сохраняющий тепловые характеристики в сухой и влажной атмосфере). «Поэтому большинство систем Reynaers являются эффективным решением для энергопассивного строительства, что подтверждают экологические сертификаты Passive House Institute (Германия) и Minergie (Швейцария). Центральные уплотнители из TPE второго поколения, в сочетании с уплотнителями из XPET пены, также помогают достичь высоких теплофизических показателей», - добавляет специалист.
Руководитель отдела строительного консалтинга profine RUS Александр Артюшин подчеркивает высокую энергоэффективность конструкций на основе ПВХ, ключевые элементы которых непрерывно подвергаются изменениям и усовершенствованию. «Так в структуре профильных систем появилось третье внутреннее уплотнение; менялось их конструктивное внутреннее исполнение (увеличение количества камер и оптимизация их размеров); расширялся фальц для установки стеклопакетов. Кроме изменений в профильных системах, менялось и устройство самих стеклопакетов: стали применяться низкоэмиссионные и мультифункциональные стекла, камеры заполняться осушенным инертным газом. Фурнитура, петлевые группы также не остались в стороне и вносят свой вклад. Например, внутренние петли, которые не прерывают контур уплотнения. Такой комплексный подход позволяет изготавливать оконные конструкции с характеристикой по показателю сопротивления теплопередаче более 1 м² * °С/Вт», - говорит он.
«У нас три системы с шестью или более камерами, и с тремя контурами уплотнения – Фаворит Спэйс, Элегант и Эфорте. Для получения максимального эффекта от использования таких систем необходимо использовать с ними подходящие стеклопакеты. Если в их состав будут входить «правильные» стекла и «правильная» дистанционная рамка, да еще предусмотрено заполнение его камер аргоном, можно получить окно с коэффициентом сопротивления теплопередаче Ro, значительно превышающим 1 м² °С/Вт», - добавляет Вячеслав Ганцев.
Алексей Тарасов обращает внимание на экономический эффект использования энергоэффективных систем. «Если вместо наиболее распространенного окна с сопротивлением теплопередаче R = 0,55 применяется энергоэффективное с R = 0,95 (а некоторые системы имеют показатель и R = 1,15), ежегодная экономия энергии для здания, расположенного, например, в Москве составит не менее 83 кВт•ч/кв. м в год. Можно подсчитать, что 1 кв. м энергоэффективных окон будет экономить до 146 рублей за отопительный сезон. Может показаться, что цифра экономии с «квадрата» энергоэффективного окна за срок его службы невелика – порядка 4,5 тыс. рублей. Однако если пересчитать сумму исходя из условий типового 12-этажного 6-подъездного жилого дом (не меньше 3,5 тыс. кв. м остекления), она составит около 15 млн рублей. А это уже совсем не маленькие деньги для владельца или управляющей компании», - отмечает он.
Право выбора
Эксперты отмечают, что добиться искомого результата, можно только используя качественную продукцию, причем необходимо заранее произвести необходимые расчеты.
«Надо выбирать сертифицированных производителей, которые имеют опыт в проектировании и выпуске светопрозрачных конструкций. Ведь их теплотехнические характеристики и надежность во многом зависят от правильно подобранной системы и стеклопакета. Огромное влияние на качество конструкций оказывает и качество сборки», - говорит Сергей Колосов. «В особо сложных, уникальных случаях, лучше изготовить опытный образец и испытать его либо в лаборатории, либо в «полевых условиях», - добавляет Алексей Тарасов.
По словам Александра Артюшина, в случае же с заказом нестандартных конструкций лучше ориентироваться на компании, которые работают с инновационными продуктами, поскольку они более мобильны и могут довольно быстро дополнять свои продуктовые линейки новыми позициями. Как правило, такие компании работают в тесном контакте с системодателями – разработчиками новых конструкций и получают от них техническую и технологическую поддержку.
Вячеслав Ганцев отмечает, что с точки зрения базового запроса при заказе нестандартных конструкций неплохо получить от оконной компании как минимум расчеты статики профиля и стеклопакетов. «Еще лучше получить расчеты потерь энергии при различных вариантах остекления. Тогда как минимум будет видно, что оконная компания серьезно относится к вопросам подбора системы остекления. В принципе, современные расчетные программы позволяют даже узнать температуры на различных участках поверхности конструкции изнутри. Это, кстати, позволит сразу оценить, насколько комфортной в действительности будет конструкция в режиме реальной эксплуатации», - говорит он.
Чтобы согреться
Но сберечь тепло при панорамном остеклении – это только часть задачи по обеспечению энергоэффективности таких помещений. Еще один ключевой вопрос – обеспечить правильное отопление таких объектов. «Внутрипольные конвекторы – идеальное решение для инженерных систем зданий с панорамным остеклением. Благодаря своему принципу работы, они позволяют избежать понижения температуры в зоне окна, ликвидировать тепловые потери и предотвратить скапливание конденсата», - уверена Виктория Нестерова.
С ней согласен Александр Батаев. «Для предотвращения потока холодного воздуха от светопрозрачных ограждающих конструкций чаще всего применяются приборы отопления, которые размещаются по всей ширине остекления. Так, внутрипольные конвекторы Möhlenhoff, образуя перед окном тепловую завесу, защищают от образования конденсата и не дают холоду пробраться вглубь помещения. Для более эффективного результата прибор должен быть установлен на расстоянии 80-200 мм от окна, а шторы должны быть расположены не менее чем на 50 мм от пола», - говорит он.
По словам Виктории Нестеровой, для нестандартной архитектуры и сложных планировок применяются внутрипольные конвекторы, изготовленные под заданный радиус и с угловыми элементами. «В зданиях с многоуровневым остеклением оптимальным решением, в дополнение к внутрипольным конвекторам, будет использование фасадных приборов, которые крепятся к вертикальным стойкам или горизонтальным ригелям оконных конструкций. В зависимости от высоты фасадного остекления, возможна установка этих конвекторов в один или несколько ярусов. Есть и вариант, как отопить помещение с панорамным остеклением без внутрипольных конвекторов. Серия Коралл – это низкие приборы (высота без опор – 8 см, с опорами – 15 см), которые обладают достаточной мощностью, чтобы и отопить помещение и отсечь холодный воздух от окон, при этом их незначительная высота оставляет максимально открытым вид из окон», - рассказывает она.
Не ошибиться!
При этом эксперты подчеркивают, что отопление помещений с панорамным остеклением – это сложная задача и для ее решения необходим правильный подбор оборудования и качественный монтаж.
«К основным ошибкам можно отнести игнорирование рекомендаций производителей приборов отопления в части установки, монтажа и эксплуатации. Например, использование систем отопления с недостаточной мощностью, например, исключительно только теплого пола. Это не рекомендуется для большей части территории России, так как напольное отопление не компенсирует полностью теплопотери помещения, и не в состоянии обеспечить перехват нисходящего потока холодного воздуха от остекления. Негативным фактором является, конечно, и желание застройщиков сэкономить на приборах отопления. Это приводит к дискомфорту нахождения людей в таких помещениях, переохлаждению, что опасно в первую очередь для детей», - констатирует Виктория Нестерова.
По словам Александра Батаева, распространены ошибки и при выборе внутрипольных конвекторов. «Основной из них является подбор исключительно по размерам, тогда как разумнее сначала определиться с требуемой теплопроизводительностью. В первую очередь рассматриваются модели с естественной конвекцией, но если в силу габаритных ограничений при естественной конвекции не достигается требуемая теплоотдача, то уже рассматриваются модели с принудительной конвекцией», - говорит он. Эксперт добавляет также, что при выборе вентиляторных конвекторов следует принимать во внимание и шумовые характеристики, поэтому логичнее подбирать прибор по теплопроизводительности при средней скорости вращения вентиляторов.
«При монтаже внутрипольных конвекторов следует учитывать особенности застывания бетонной стяжки пола. Во избежание давления на корпус и возможной его деформации необходимо заблаговременно подготовить в полу нишу для прибора. При размещении конвектора в нише рекомендуется обмотать его корпус тепло-звукоизоляционным материалом. Кроме того, необходимо защитить внутреннюю часть конвектора от попадания брызг при залитии бетонного раствора и от попадания строительного мусора (особенно опасно загрязнение движущихся частей вентиляторных моделей). Необходимым условием для стабильной теплопроизводительности внутрипольного конвектора является его систематическая чистка и обслуживание. В противном случае загрязненный теплообменник способствует распространению в помещении вредных бактерий, а накапливание пыли и грязи в движущихся частях прибора усиливает шумовые характеристики», - заключает Александр Батаев.
Эксперты отмечают, что правильно смонтированные и грамотно эксплуатирующиеся конвекторы обеспечивают надежный результат. Так, техника Möhlenhoff работает на таких объектах в Москве, как Московский океанариум, Центральный автовокзал, ЖК «Вишневый сад» и др. Оборудование АО «Фирма Изотерм» действует в комплексах «Стокгольм», «Дипломат», Docklands и др. в Петербурге, деловом центре «Москва-Сити», ЖК «Дискавери», «Метрополия», «Царская площадь» и др. в столице.