Минеральная вата - эффективная защита в системе «мокрый фасад»
Технология внешней отделки и утепления зданий «мокрый» фасад все активнее применяется в строительстве и реконструкции жилых, промышленных, торговых и общественных объектов. В качестве теплоизоляционного слоя в данных фасадных конструкциях очень часто используется минеральная вата. Несмотря на относительно простой процесс создания таких фасадов, важно использовать соответствующие требованиям материалы и следовать всем правилам монтажа.
Напомним, «мокрый» фасад также называют СФТК (система фасадная теплоизоляционная композитная). Это многослойный пирог, внутри которого есть теплоизоляционный материал, клеевая смесь, армирующая сетка, крепежные элементы, а снаружи - штукатурный декоративный слой. Наряду с пенопластом в данной системе утеплителем служит минеральная вата, а точнее ее конкретный вид – каменная (базальтовая) вата.
Надежность решения
Директор по исследованиям и развитию технологий направления «Минеральная изоляция» ТЕХНОНИКОЛЬ Андрей Титов отмечает, что каменная вата в настоящее время пользуется большой популярностью в системах СФТК, да и сами системы «мокрого» фасада становятся все более распространенными. Популярность минеральной изоляции, поясняет он, обусловлена физико-механическими характеристиками материала, а именно - высокой его энергоэффективностью, технологичностью в процессе монтажа и долговечностью. Обширный многолетний опыт ее применения в различных зданиях в разнообразных климатических зонах подтверждает надежность данного решения.
Как добавляет директор по маркетингу и коммуникациям PAROC в России Таисия Селедкова, в целом минеральная вата высоко востребована на фасадном рынке: она используется как при устройстве штукатурных фасадов, так и вентилируемых, где каждая фасадная система имеет свои технологические плюсы. «Например, Санкт-Петербургу больше востребованы штукатурные системы, которые позволяют решать задачи по применению разнообразных архитектурных деталей и цветовых решений. При этом технологии СФТК также незаменимы при реконструкции старого фонда в российских городах, в том числе и в Москве»,- рассказывает эксперт.
По нашим оценкам, уточняет менеджер по развитию направления «Фасады» компании ROCKWOOL Григорий Громаков, доля фасадов, выполненных с использованием каменной ваты, сейчас составляет около 75%. Это неудивительно, считает специалист, так как утепление зданий с помощью каменной ваты по технологии «мокрый» фасад позволяет установить эффективную и пожаробезопасную теплоизоляцию. «Теплоизоляция из каменной ваты работает по принципу термоса – она позволяет сохранять температуру внутри помещения. Таким образом, зимой внутри тепло, а летом – прохладно. Это позволяет владельцам зданий экономить до 40% расходов на обогрев или кондиционирование помещений. Кроме того, каменная вата – абсолютно пожаробезопасный материал. Ее волокна выдерживают температуры свыше 1000 0С и выступают барьером для распространения огня. Со временем утеплитель не сжимается и не деформируется. Каменная вата – один из самых долговечных материалов на рынке фасадной теплоизоляции», - подчеркивает он.
Соблюдая правила
Качественно смонтировать «мокрый» фасад возможно только при правильном выборе теплоизоляционного и других задействованных материалов (клея, арматуры, дюбелей) и соблюдении всей технологии работ. В том числе, температура внешней среды не должна быть ниже +5 °C и выше + 30 °C. Нельзя проводить монтаж фасада и во время дождя.
Ключевыми показателями для штукатурных фасадов выступают прочность на отрыв слоев и плотность утеплителя, отмечает генеральный директор Торгового дома HOTROCK Елена Пашкова. Прочность на отрыв слоев или, как его еще называют, предел прочности при растяжении перпендикулярно к лицевым поверхностям отвечает на вопрос – выдержит ли материал штукатурный или клинкерный слой. «Для систем «мокрых» фасадов допускается применение минераловатных плит, данный показатель по которым больше или равен 15 кПа. На производстве HOTROCK применяется уникальная технология Elastic Fiber, благодаря которой базальтовое волокно получается более тонким и эластичным (3-8 мкм при длине 60-90 мм). Такая структура волокна обеспечивает повышенную прочность на отрыв слоев - 18 кПа (серии Фасад Лайт и Фасад).
Необходимая плотность утеплителя зависит от типа здания, где он будет применяться. Для частных домов с 2-3 этажами достаточно значения 110 кг/м3. На высотных зданиях или в районах с повышенными ветровыми нагрузками рекомендуется применение утеплителей плотностью не менее 130-150 кг/м3. Плотность прямо пропорциональна стоимости материала, однако экономия здесь может привести к печальным последствиям: снижению общей целостности фасадной системы, ее стойкости к деформациям и внешним воздействиям», - уверена она.

По словам Григория Громакова, значительное число неточностей при устройстве фасадов приходится на этап проектирования: здесь много сложных расчетов и технических тонкостей. Каждое здание специфично, и инженер должен учесть все особенности: тип несущих стен, этажность, назначение, режим эксплуатации. Для штукатурных систем важно корректно провести расчет термического сопротивления и учесть в проекте теплоизоляцию оконных откосов (иначе зимой окна промерзнут по периметру). «Недочеты при установке теплоизоляционных плит, - продолжает он, - также недопустимы. Нарушение технологии может повлечь за собой серьезные последствия, вплоть до разрушения здания. В штукатурных фасадах распространенный «промах» – недостаточная стыковка плит утеплителя и заполнение получившихся трещин клеевым раствором. Это приводит к образованию «мостиков холода» и нарушению целостности декоративного покрытия».

Специалист также отмечает, что нередко ошибки допускаются при создании армирующего слоя: сетка монтируется непосредственно на теплоизоляцию, а ее смежные полотна стыкуются без нахлеста. Это приводит к трещинам на поверхности фасада. Деформацию финишного покрытия вызывают и некачественные дюбели, особенно если они выступают над плоскостью утеплителя.
«Часто совершаются ошибки и при креплении теплоизоляции. Неравномерное нанесение клеевого состава приводит к тому, что края плит загибаются и плохо совмещаются, а стыки становятся видимыми. Использование недостаточного количества дюбелей, а в отдельных случаях их полное отсутствие рано или поздно может привести к обрыву всего теплоизоляционного слоя. Важно помнить, клей удерживает утеплитель от смещения, дюбеля – от отрыва, они не заменяют друг друга», - добавляет Елена Пашкова.
В условиях конкуренции
Эксперты отмечают высокую конкуренцию на рынке производителей минеральной ваты. Она, в том числе, стимулирует к созданию новых, более технологичных материалов. В частности, компания РAROC вывела на рынок свою инновацию – ламельную изоляцию. Одно из основных ее преимуществ – это возможность крепления к бетонной поверхности без дополнительно механического крепежа (если на это нет соответствующих требований производителей фасадной системы).
По словам Андрея Титова, если говорить о внутренней конкуренции среди производителей каменной ваты, то она, разумеется, присутствует и носит вполне традиционный для отрасли характер. «Важно, чтобы продукция отвечала требованиям стандартов, имела всю необходимую документацию. Это обязательные требования, без которых поставки на серьёзные объекты невозможны. Для конкуренции большое значение имеют такие факторы, как репутация производителя, набор сервисных услуг и их уровень, качество продукции, цена, сроки поставки. Так, например, за счет совершенствования технологий и успешной модернизации на производстве нам удалось заметно повысить прочностные характеристики продукции без увеличения ее плотности. Хотя внешне материал не изменился. Об импорте каменной ваты в Россию говорить не приходится, рынок обеспечен продукцией российских производителей. Более того, российская каменная вата экспортируется во многие страны ближнего и дальнего зарубежья»,- сообщил представитель ТЕХНОНИКОЛЬ.

По мнению Елены Пашковой, российские производители сегодня способны предложить продукцию с аналогичными импортным материалам характеристиками по более выгодным ценам. В целом, добавляет она, при выборе минераловатного утеплителя стоит отдавать предпочтение компаниям, давно присутствующим на рынке. Такие производители заботятся о своей репутации и уделяют пристальное внимание качеству выпускаемой продукции.
Как отмечает Таисия Селедкова, на рынок сейчас влияют и другие важные факторы. «Во-первых, это изменение законодательства в части нормативов, в том числе по пожарной безопасности и энергоэффективности. Требования к устройствам фасадов весьма жесткие, штрафы за их нарушения значительные. Во-вторых, более тщательного подбора изоляции требует и современная архитектура. Появляется все больше зданий со структурным остеклением, с большими панорамными окнами. Такие решения требуют более точных расчетов по теплотехнике и более качественных теплоизоляционных материалов, чтобы соблюсти все протоколы по энергоэффективности»,- резюмирует эксперт.
На прочном основании. Особенности усиления фундаментов
Современные технологии позволяют эффективно усилить фундамент. Выбор оптимальной – зависит от конкретных задач.
Надежный фундамент отвечает за безопасность эксплуатации всего здания. Соответственно, конструкция должна быть особо прочной и долговечной. Тем не менее выявляются случаи, когда под зданиями, особенно возведенными очень давно, фундамент ослаблен и деформирован. Также встречаются прецеденты, когда проблемы в этой сфере обнаруживаются под новыми домами и даже при нулевом цикле строительных работ.
В настоящее время появилось множество современных технологий, позволяющих быстро диагностировать состояние фундаментов, выявить дефекты и повреждения. Разработаны и используются эффективные новые методы усиления и укрепления этих конструкций. Некоторые из них позволяют работать без нарушения внешнего вида и конструктивных особенностей здания.
На начальном этапе
По словам генерального директора Ikon Development Антона Детушева, если говорить непосредственно о нулевом цикле, то чаще всего усиление фундаментов необходимо в случаях, когда были допущены технические ошибки при проведении изыскательских и проектных работ. Также оно требуется при возобновлении строительства на объектах, которые не были должным образом законсервированы и защищены от внешних воздействий. В том числе, когда были выявлены нарушения при возведении дренажей, повлекшие за собой образование пустот вследствие суффозии (вымывание грунтов из-под подошвы фундамента) или иных техногенных процессов, связанных с подвижкой грунтов (проседание, пучение, выветривание и т. д.).
Инженер компании «Строительный контроль» Евгений Пономарёв приводит пример, когда на нулевом цикле строительства требуется усилить свайный с монолитным ростверком фундамент. Такие могут понадобиться из-за особенности грунтов, которые из-за своей подвижности могут меняться с момента проведения инженерных изысканий до начала строительства. «На основании инженерно-геологических изысканий выполняется проектирование свайного фундамента. В документе указывается длина, сечение и шаг свай. Однако данных изысканий бывает недостаточно – и принятые проектные решения необходимо проверять в процессе работ. Поэтому при устройстве свайного фундамента производятся полевые испытания грунтов динамической нагрузкой, при которых определяется параметр, называемый отказом, проводятся статические испытания свай, выясняется их несущая способность. Если результаты этих испытаний не соответствуют проектным данным и нормативным требованиям, то принимается решение об усилении фундамента. В частности, технология усиления предполагает применение свай с большей длиной и (или) большего поперечного сечения. Также возможно использование свай-дублёров, в определенном шаге от конструкции, показавшей неудовлетворительные значения при испытаниях», – рассказывает он.
Рациональный выбор
Эксперты отмечают, что в разных условиях оптимальны различные методы усиления несущих конструкций. Необходимо учесть характеристику почвы, стоящие рядом объекты недвижимости и коммуникации и многое другое.
По словам главного архитектора ГК «КВС» Надежды Виролайнен, чаще всего требуется усиление фундаментов уже существующих, а не строящихся зданий. В частности, такие работы проводятся на объектах реконструкции, где необходимо укрепить старые конструкции или где идет перестройка дома и предполагается увеличение статической нагрузки. Усиление фундаментов старых зданий может также понадобиться, когда они были повреждены из-за проведения рядом других строительных работ.
«Методы зависят от типа фундамента и характеристик грунтов. Может, например, происходить погружение дополнительных свай (набивных, буроинъекционных и других). Локальный ремонт может выполняться саморасширяющимися ремонтными составами. При недостаточной несущей способности элементов фундаментов делают увеличение сечения «добетонированием» с армированием и анкеровкой арматуры. При необходимости усиливать столбчатые или ленточные фундаменты на некоторых объектах выполняются обоймы из прокатных металлических профилей, пластин. При изменении конструктивной схемы реконструируемого здания может выполняется устройство новых элементов – фундаментных плит, балок и др.», – рассказывает Надежда Виролайнен
По мнению руководителя конструкторского отдела компании «Метрополис» Алексея Кущенко, самыми распространенными методами усиления грунтов можно считать переопирание здания на сваи и закрепление грунтов в основании фундамента. Они проводятся совместно с работой по устранению последствий физического износа фундаментов в виде цементного инъектирования тела фундаментов, устройства различных обойм и т. п. «Примером подобного подхода могут служить работы на объекте культурного наследия в центре Москвы. Реконструкция подразумевала увеличение нагрузок на фундаменты при значительном заглублении подземной части здания. Проектом предусмотрено переопирание несущих колонн и стен здания на грунтоцементные сваи диаметром 600 мм, армированные стальными трубами диаметром 140 мм. Выполнению свайных работ предшествовало восстановление физической целостности фундаментов путем вычинки поврежденных мест, инъектирования тела фундаментов и, в отдельных местах, устройство металлических обойм», – добавил он.
Как в случае усиления фундаментов простой цементацией, так и в случае иньектирования важен качественный строительный материал. Технический специалист корпорации ТЕХНОНИКОЛЬ Антон Ружило отмечает, что для того, чтобы повысить эффективность процесса гидратации цемента, создать более плотную структуру бетона и, таким образом, улучшить прочностные показатели конструкции, рекомендуется использовать специальные добавки. «Это в равной степени касается и заливки нового фундамента, и струйной цементации. Применение добавок оказывает положительное влияние на такие физико-механические свойства бетона и раствора, как морозостойкость, водонепроницаемость, прочность и удобоукладываемость», – подчеркнул специалист.
Кстати
Иньектирование фундаментов можно проводить в стесненных условиях. Кроме того, не требуется вскрывать площадку вокруг здания и на месте строительства, углублять котлован и делать дополнительные траншеи.
С учетом местных особенностей. Специфика инженерно-гидрометеорологических изысканий
Бывали случаи, когда после проведения инженерно-гидрометеорологических изысканий (ИГМИ) корректировалась локация строительства или вовсе сворачивался проект. Почему это так важно?
Наряду с геологическими, экологическими исследованиями ИГМИ помогают раскрыть особенности территории, на которой планируется построить здание, сооружение или линейный объект.
Следуя по этапам
По словам специалистов, состав, объем и виды ИГМИ регламентируется требованиями действующих нормативных документов (СП 47.13330.2016, СП 11-103-97, СП 33-101-2003). Работы выполняются в соответствии с техническим заданием и программой ИГМИ, представленной в приложении к отчету.
Главный гидролог ЗАО «ЛенТИСИЗ» Ольга Ходкина отмечает, что ИГМИ проводятся в три этапа. Первый – подразумевает подготовительную работу. Он включает в себя изучение планового материала на предмет достаточности для снятия расчетных морфометрических характеристик в районе проведения работ. Второй этап – это полевые изыскания на местности. Проводится комплекс гидрографических, гидрометрических и морфометрических работ. Они выполняются с целью получения исходной информации для расчетов уровней водотока, оценки русловых деформаций и других гидрологических характеристик. «Третий этап – это камеральная работа. Она выполняется по завершении полевых исследований, с использованием полученных материалов. Включает в себя необходимые гидрологические расчеты, составление текстовых и графических приложений, нанесение гидрологической информации на топографические профили и планы, составление технического отчета по ИГМИ или главы в комплексном отчете по изысканиям», – поясняет она.
В целом, как добавляет эксперт, ИГМИ позволяют учесть ряд факторов, серьезно влияющих на надежность и жизнеспособность будущего объекта, а также учесть его влияние на окружающую среду.
Территориальная специфика
Проведение ИГМИ особенно важно для территорий Петербурга и Ленобласти. Местность имеет влажный переменчивый климат (негативно влияющий на состояние зданий, сооружений, дорог), болотистую почву, множество водных объектов. Все это необходимо учитывать при проектировании и строительстве, чтобы избежать подтопления участков, домов, трасс во время таяния снегов, паводков и пр. Собственникам объектов недвижимости важно не забывать, что грунтовые воды могут привести к разрушению фундаментов, что чревато серьезными проблемами.
Действующие нормативы по определению гидрометеорологических характеристик разработаны преимущественно для естественных условий, рассказывает заведующий отделом прогнозирования гидрологических процессов и экспериментальных исследований ФГБУ «Государственный гидрологический институт» Михаил Марков. В основе их лежит представление о стационарности или цикличности природных процессов. Вместе с тем на эти процессы существенно могут влиять антропогенные факторы, а в последнее время и климатические изменения. Это необходимо учитывать в изысканиях для Петербурга и Ленобласти, особенно для урбанизированных территорий.
В настоящее время в Северной столице ИГМИ готовы делать десятки различных организаций. Многие из них используют в своей деятельности технологии, автоматизирующие рабочие процессы, а также оборудование, упрощающее проведение полевых работ. В частности, специалисты проводят дистанционный осмотр местности с помощью беспилотных летательных аппаратов, геодезической спутниковой аппаратуры с контроллером.
По словам Михаила Маркова, стоимость ИГМИ зависит от состава и объема необходимой гидрометеорологической информации. «Она определяется в зависимости от вида и назначения сооружений, их уровня ответственности, стадии проектирования, а также гидрологических и климатических условий района (площадки, трассы) строительства. По опыту нашего института, стоимость ИГМИ варьируется от 25 тыс. рублей за справку по какому-либо одному параметру до 3–10 млн и более при гидрометеорологическом обосновании проектирования дорогостоящих объектов, подобных АЭС или комплексу защитных сооружений от наводнений», – добавил он.
Мнение
Ольга Ходкина, главный гидролог ЗАО «ЛенТИСИЗ»:
– Стоимость гидрометеорологических изысканий определяется, в первую очередь, исходя из поставленной задачи, объема предстоящих работ, а также их сложности, видов используемого оборудования. В среднем она начинается от суммы в несколько десятков тысяч рублей для площадок, не попадающих в водоохранную зону, и выше – для участков, расположенных в непосредственной близости к водотокам и водоемам. На цену также будут влиять изученность района работ, площадь участка обследования. При проведении изысканий для строительства линейного объекта (газопровода, линии электропередач, автомобильной трассы) также учитываются пересекающие водные переходы. Стоимость услуг будет начинаться от суммы в 100 тыс. рублей.
Михаил Марков, заведующий отделом прогнозирования гидрологических процессов и экспериментальных исследований ФГБУ «Государственный гидрологический институт»:
– ИГМИ проводятся во всех случаях, когда проектируемые инженерные объекты должны быть устойчивы к воздействиям гидрометеорологических факторов и гарантированно обеспечены водными и климатическими ресурсами с учетом экологических и иных ограничений, связанных с обеспечением благоприятных условий проживания, труда и отдыха населения. Заказчиками ИГМИ могут быть разработчики градостроительной документации, инвестиционные компании, проектные организации, органы исполнительной власти, экспертные сообщества, экологические организации и физические лица.

