Промышленные виды и типы фундаментов
Прочность и надежность любого сооружения зависит от надежности фундамента и грунтового основания.
Стоимость фундамента в затратах на строительство сооружения составляет от 7 до 15%. Но при строительстве на местности со сложным рельефом, сильно обводненных почвах, с применением укрепления грунта, стен и так далее, стоимость может взлетать до 40%. Поэтому крайне важно подходить к выбору фундамента обдуманно и взвешенно.
От чего зависит выбор фундамента
Фундамент– это подземная часть здания или сооружения, воспринимающая нагрузку от надземной части и передающая ее на грунтовое основание. Фундамент состоит из следующих элементов:
- Обрез – верхняя плоскость фундамента, на которой располагаются наземные части здания.
- Подошва- нижняя плоскость, соприкасающаяся с грунтовым основанием
Состояние грунтов
Грунты– это геологические породы, залегающие в верхних слоях земли. Состоят из твердых частиц- зерен, разной размерности, по- другому- «скелета грунта», и пустот, заполненных атмосферным воздухом или частично водой.
Основанием называется толща грунта, непосредственно принимающая нагрузку от фундамента здания или сооружения.
Основания, способные воспринимать нагрузку без предварительного усиления грунтов, называют естественным. Основания, которые могут принимать нагрузку только после проведения мероприятий по усилению грунтов, называются искусственными.
В следствии давления, передаваемого зданием, грунты под фундаментом испытывают значительные сжимающие усилия. Под действием этих нагрузок грунты равномерно уплотняются. Такие равномерные деформации называют осадкой, которые вызывают осадку фундамента.
Неравномерные деформации грунта, происходят в результате уплотнения и коренного изменения структуры грунта под воздействием внешних нагрузок, либо собственной массы, или других факторов. Например, замачивания просадочного грунта, подтаивания участков льда в грунте, называют просадкой. Такие деформации могут вызвать повороты фундаментов, вплоть до разрушения. Просадки основания недопустимы.
Для того, чтобы деформации не оказали опасных воздействий на работающие под нагрузкой конструкции, не повлияли на условия эксплуатации, установлены предельные величины деформации основания и напряжения в грунте, возникающих под подошвой фундамента. Ширина и глубина напрягаемой зоны значительно превосходит ширину основания фундамента. Но на глубине равной шестикратной ширине подошвы фундамента грунт уже не испытывает напряжений.
Если грунты-основания, в пределах сжимаемой толщи, не обладают необходимой несущей способностью, например, насыпные грунты, торфяники, рыхлые песчаные и суглинистые грунты с большим содержанием органических осадков, то их искусственно укрепляют или применяют фундаменты, передающие нагрузки на нижележащие прочные грунтовые основания.
При проектировании промышленных фундаментов обязательно учитываются предельные состояния грунтов по двум группам:
- Несущей способности
- Деформации

Глубина заложения фундамента
На показатель глубины заложения строительного основания влияют факторы:
- Эксплуатационное назначение строения
- Архитектурные особенности сооружения
- Нагрузки: статические и динамические
- Уровень и состояние грунтовых вод
- Глубина заложения коммуникаций и фундаментов соседних строительных конструкций
- Характер грунтов
- Уровень промерзания почвы
- Рельеф местности строительной площадки
Какие существуют нагрузки на фундамент
При расчете параметров основания будущего здания максимально учитываются всевозможные нагрузки. Нагрузки на фундамент делят на постоянные и переменные.
Постоянные нагрузки:
- Вес строительных материалов для возведения стен, материалы окон и дверей
- Вес перекрытий.
- Кровля.
- Лестничные марши
- Вентиляционное и санитарно- техническое оборудование
- Станки, подъемные механизмы и другое стационарное оборудование
Переменные нагрузки:
- Ветровая нагрузка.
- Нагрузка снежного покрова.
- Динамические нагрузки от прилегающих автомобильных дорог, аэропортов, соседних промышленных зданий.
- Вес людей работающих, проживающих и обслуживающих здание.
- Вес мебели, мобильного оборудования.

Требования к фундаментам
К строительным основаниям предъявляются те же, либо более строгие требования, что и к возводимым на них строениям. Поэтому срок службы фундамента не может быть менее срока эксплуатации здания или сооружения.
- Прочность.
- Устойчивость на опрокидывание и скольжение в плоскости подошвы.
- Инертность к воздействию агрессивных грунтовых вод.
- Стойкость к климатическим факторам таким как морозостойкость, пучению грунтов при замерзании.
- Соответствие по долговечности сроку службы здания.
- Экономичность.
- Индустриальность – это возможность производства конструктивных элементов промышленным способом.
Исходя из вышеперечисленных требований выстраиваются принципы проектирования строительных оснований, а именно:
- Расчет фундаментов строений производится по предельным состояниям независимо от вида и типа строительного основания, опираясь на данные геолого-инженерных изысканий.
- Учет взаимодействия всей системы - грунт, строительное основание и надфундаментные несущие сооружения: стены, балки, перекрытия.
- Всесторонний подход при отборе типа фундамента: оценка работы грунтов на основе инженерно-геологических условий на строительной площадке; степени реакции несущей конструкции здания или сооружения на неравномерные деформации грунта.

Проектирование фундаментов
Проектировать строительные основания должны специалисты высокого профессионального уровня. Цена ошибки, допущенной при проектировании, может быть очень высока. К проектированию фундамента следует приступать только тогда, когда на руках имеются все вводные данные: результаты инженерно- геологических исследований, подробный проект надфундаментной части здания или сооружения. Приведенные факторы указывают на сложность выполнения проектирования оснований и фундаментов. Поэтому бывает трудно однозначно решить с выбором рационального типа фундамента, не приняв во внимание несколько возможных, конкурирующих вариантов. Окончательное решение следует принимать на основе технико-экономического сравнения рассматриваемых вариантов оснований и фундаментов. При этом необходимо учитывать финансовые затраты на подготовительные работы, проектировку и строительство; долговечность конструкции, материалоемкость, индустриальность изготовления, трудоемкость, возможность проведения работ в холодное время года. Важно учесть момент сохранения естественной структуры грунтов основания во время производства земляных работ.
Вариантное проектирование оснований и фундаментов рекомендуется выполнять в такой последовательности:
- Наметить возможные, конкурирующие варианты оснований и фундаментов с учетом инженерно-геологических условий строительной площадки, конструктивных особенностей здания или сооружения и действующих нагрузок.
- Рассчитать выбранные варианты оснований и фундаментов в стадии технического проекта, отобрав наиболее нагруженные фундаменты.
- Провести технико-экономическое сравнение вариантов и выбрать из них наиболее рациональный.

Классификация фундаментов
Фундаменты классифицируют по признакам.
По форме в плане:
- Ленточные
- Столбчатые
- Сплошные (плитные)
- Свайные

По виду материала:
- Бетонные
- Железобетонные
- Бутовые
- Бутобетонные
- Кирпичные
- Деревянные

По характеру работы под нагрузкой
- Жесткие. Такие фундаменты испытывают преимущественно сжатие, и в которых не возникает деформации изгиба. Производятся из природного камня и цементного раствора. Например, бутобетон или бетон.
- Гибкие. Работающие как на сжатие, так и на изгиб. В строительстве подобных фундаментов применяют железобетон.
По способу производства:
- Сборные
- Монолитные
По глубине заложения
- Мелкого заложения. Как правило, это до двух метров, но выше точки промерзания грунта
- Глубокого заложения. Ниже точки промерзания грунта.

Виды и типы фундаментов
Ленточные
Применяют на сухих, прочных грунтах. Ленточные фундаменты могут быть как сплошными, так и прерывистым. В разрезе могут представлять собой прямоугольник, трапециевидную форму, либо ступенчатую конструкцию.
- Сборные. Состоят из железобетонных блоков, блоков-плит, фундаментно-стеновых блоков. Блоки- плиты или блоки-подушки выпускаются прямоугольной или трапециевидной формы. Укладываются на тщательно утрамбованную песчаную подготовку толщиной 100 мм. В целях сокращения расхода бетона и снижения массы фундамента применяют пустотелые блоки с узкими сквозными или широкими замкнутыми пустотами. Размеры блоков подушек принимают: по ширине от одного до трех метров; по длине от 1,2 до 3 метров; по высоте 0,3 метра и 0,5 метра
- Монолитные. Представляет собой армированную бетонную конструкцию, проложенную под несущими и ограждающими стенами здания. Может быть выполнен как с мелким заглублением, так и с заглублением ниже уровня промерзания почвы. Позволяет, как и сборный ленточный фундамент, предусмотреть в проекте сооружения подвальные помещения и цокольный этаж.
Все типы ленточных фундаментов подлежат обязательной защите от дождевых и талых вод. С этой целью по периметру наружных стен делают отмостку из асфальта или бетона или сборных железобетонных плит. Ширина отмостки должна быть не менее 0,5 метра, с уклоном от здания 2-3%. Однако, в любых грунтах содержится капиллярная влага. Влага проникает в тело фундамента и поднимается к зоне сопряжения с элементами надземной части строения. Чтобы не допустить поступление влаги на границе фундамента со стенами устраивают гидроизоляцию.
За неправильным осуществлением работ по устройству гидроизоляции и отведению внешних вод неминуемо кроется разрушение фундамента. Увеличение влажности станет причиной вымывания раствора из соединительных швов, отслоения штукатурки, коррозии арматурного каркаса.

Столбчатые фундаменты
Устраиваются в тех случаях, когда нагрузка от здания вызывает давление на грунт меньше нормативного (малоэтажное промышленное строительство), либо под колонны. Бывают сборными и монолитными. Под зданиями с несущими стенами столбчатый фундамент располагают под углами, под простенками и через 3-5 метров на глухих участках стен. По фундаменту прокладывают балки из сборного или монолитного железобетона.
Столбчатые фундаменты применяют для отдельно устанавливаемых столбов, колонн при строительстве, как одноэтажных, так и многоэтажных промышленных и гражданских зданий. Колонный каркас опирают на железобетонные блоки стаканного типа или блок- стакан.
Монолитный столбчатый фундамент представляет собой ступенчатую конструкцию с подколонником и стаканом для установки колонн. Высота ступени составляет 0,3 или 0,45м. Подколонники устанавливают на плиту по цементно-песчаному слою. Высота блок-стакана 1,5 и 1,8 метра до 4,2 метра с градацией через 0,6 метра. Размеры подошв в плане составляют от 1,5 на 1,5 метра до 6,6 на 7,2 с модулем 0,3 метра.

Сплошные фундаменты
При очень слабых грунтах и значительных нагрузках в строительстве применяют сплошные фундаменты или иначе- плитные. Они представляют собой сплошную железобетонную плиту под всей площадью здания. Имеют плоскую или ребристую конструкцию. Применяется в строительстве сооружений без подвалов и цокольных этажей. Плитный фундамент отличается высокой надежностью. Поэтому может применяться на любых видах грунтов. Экономически неоправданно использование плитного фундамента на местности с большим уклоном. Устройство плитного фундамента является затратным, так как подразумевает значительный объем земляных работ и использования большого количества строительных материалов. Конструктивно плитный фундамент представляет из себя многослойную структуру.
- Работы по обустройству сплошного фундамента начинают с выборки слоя почвы и подготовки котлована.
- Площадь котлована утрамбовывают. Затем кладется песчаная или гравийно-песчаная подушка. Она служит для гашения вибраций, отведения грунтовых вод, противодействует пучению.
- Прокладывают геотекстиль для армирования и противодействию заиливания подушки. В зависимости от толщины подушки геотекстиль можно прокладывать между слоями, для улучшения армировки.
- Для выравнивания основы проводят бетонную подготовку жидким раствором. Таким образом выравнивается горизонтальный уровень, что необходимо для правильной установки железобетонного каркаса и улучшается гидроизоляция.
- Гидроизоляция. Гидроизоляционные материалы предотвращают капиллярный подсос влаги
- Железобетонный армирующий каркас. Представляет собой взаимосвязанную конструкцию из арматуры. Каркас предотвращает растрескивание бетона и обеспечивает высокую стойкость к деформациям.
- Бетонный массив. Толщина его зависит от расчетных характеристик здания.
Дополнительно, в зависимости от характера грунтов может монтироваться дренажная система и выполняться утепление для противодействия промерзанию почвы.

Свайные фундаменты
Свайным называют фундамент, в котором для передачи нагрузки от сооружения на грунт используется свая. Он состоит из свай и объединяющей их жесткой связи- ростверка, либо плиты- перекрытия. В соответствии с этим свайные фундаменты бывают:
- Ростверковые
- Безростверковые
Сваи располагают под зданием по аналогии со столбчатым фундаментом, но с меньшим шагом, который определяют расчетом.
Свайные фундаменты применяют там, где необходимо передать значительные нагрузки на слабые водонасыщенные грунты. Когда производство большого объема земляных работ для устройства основания под другие виды фундамента технически невыполнимо или экономически нецелесообразно.

В зависимости от нагрузок, действующих на фундамент, сваи могут располагаться:
- По одной. Под отдельной опорой.
- Рядами под стеновыми конструкциями
- Кустами. Под колоннами.
- Свайными полями. Под строениями малой площади со значительными нагрузками.
По виду материала сваи выпускают:
- Бетонные.
- Железобетонные.
- Стальные
По способу изготовления и погружения в грунт сваи делят на:
- Забивные. Погружают методом забивки, вдавливания, вибрации и ввинчивания
- Набивные. Относятся к группе монолитных. Их устраивают непосредственно в грунте из бетона или железобетона, с помощью специальных обсадных труб, которые погружаются в предварительно сформированную скважину. Применяют такой тип фундамента при больших нагрузках. Диаметр сваи может достигать 1000 миллиметров, а глубина заложения 20 метров и более.
По характеру работы в грунте сваи делятся на два типа:
- Висячие. Не достигают плотного грунта. Принимаемую нагрузку передают за счет сил трения между их боковой поверхностью и грунтом.
- Сваи-стойки. Такие сваи проходят через слабый грунт и нижним концом опираются на прочное основание, передавая на него всю нагрузку от строения.
Отличие фундамента промышленного от частного
Основное отличие промышленных фундаментов, в том числе и фундаментов гражданского многоэтажного строительства, от фундаментов частного малоэтажного строительства заключается в том, что промышленные объекты производят значительно большую нагрузку на строительное основание. Промышленные фундаменты многоэтажных зданий часто испытывают нагрузки не только на сжатие, но и на растяжение, скручивание, смещение. Поэтому промышленные фундаменты отличаются большей прочностью, массивностью, более высокими требованиями к материалам, и дороговизной.
Цифровые технологии в строительстве
Цифровые технологии все активнее внедряются в проектирование и строительство. И это не только информационное моделирование, но и другие современные решения, упрощающие работу специалистов и делающие ее более эффективной.
В том, что трансформация строительной отрасли невозможна без внедрения передовых цифровых технологий, уверены как чиновники Минстроя, так и игроки рынка. Ряд решений уже используется, другие еще ждут своей очереди.
Правило хорошего тона
При упоминании «умных» технологий в проектировании и в строительстве в первую очередь все вспоминают BIM. Еще пять-семь лет назад для многих российских компаний информационное моделирование было практически неизвестно. Сейчас эту технологию в своей работе используют уже более половины всех крупных проектных организаций. Застройщики BIM применяют пока реже. Тем не менее, есть стойкая тенденция роста.
По мнению заведующего кафедрой информационных технологий СПбГАСУ Алексея Семенова, использование BIM на стадии проектирования в ближайшие пять лет уже станет правилом хорошего тона. Все предпосылки для этого уже есть. Внедрение BIM на последующих стадиях, на его взгляд, займет больше времени. Здесь мы можем опираться на международный опыт внедрения BIM в строительную отрасль.
«В целом, если говорить о новых технологиях, в настоящий момент активно разрабатывается и дополняется программное обеспечение, в том числе и отечественное, для использования на стадиях строительства и эксплуатации. Кроме того, для работы с информационными моделями зданий могут использоваться технологии 3D-сканирования, 3D-печати, виртуальной и дополненной реальности. Все это звучит как научная фантастика, но в отдельных организациях уже используется. Работа с этими технологиями приводит к необходимости формирования новых компетенций у выпускников вузов, к модернизации старых и открытию новых специальностей. В СПбГАСУ в этом направлении ведется активная работа. Поэтому, когда технологии получат широкое распространение, наши выпускники будут к этому готовы», – подчеркнул Алексей Семенов.
Многие проектные организации уже задействуют BIM, другие технологии – и сочетают их между собой. Как отмечают в компании «Ренейссанс Констракшн», специалисты в своей работе уже используют 4D-, 5D-проектирование, фотограмметрию и лазерное сканирование, а также технологии виртуальной и дополненной реальности. Причем и в облачных сервисах. Также туда уже уходят и платформы. Например, Autodesk делает фотограмметрию на облаке, там же происходит обработка моделей для forge viewer. В результате на компьютере проектировщика и строителя остается только браузер.
По словам главного специалиста по информационному моделированию зданий компании «Ренейссанс Констракшн» Павла Недвиги, для более глубокого внедрения данных новых технологий в проектирование понадобится два-три года. Также за этот период станет обыденной инвестиционная оценка проекта на основе информационной модели. Относительно нетиповыми технологиями останутся Machine learning & Data science. Пока имеются единичные примеры их использования. Но востребованность такого направления в ближайшие годы будет расти.
Заместитель генерального директора ООО «ПСС ГРАЙТЕК» Борис Воробьёв соглашается с коллегами. По его словам, сегодня технология BIM получила устойчивое распространение в проектировании и все больше внедряется в управление строительством. Он отмечает, что сейчас в отрасли получают распространение практика сдачи проектов на госэкспертизу в формате BIM, расчет стоимости объекта на ее основе. Также специалисты используют в работе 3D-координацию и обнаружение коллизий, автоматизированную проверку соблюдения норм в проекте и др.
В «едином окне»
По словам руководителя бизнес-направления компании Advalange Дмитрия Мордвинцева, отдельно существует потребность в удобном механизме представления отчетности. В этой сфере прекрасным инструментом, повышающим эффективность реализации проекта, является BPM-система. Она позволяет автоматизировать в формате «единого окна» взаимодействие между госзаказчиком, генподрядчиком, исполнителями на местах и оперативно предоставлять консолидированную отчетность проверяющим органам. Ключевым отличием BPM-систем является консолидация всех строительных процессов в формате «единого окна». Также возможно подключение сторонних систем, таких как видеонаблюдение объекта в режиме онлайн, картографических сервисов, и формирование различных информационных досок для всех участников процесса.
«Регионы, корпорации и проектные организации, которые уже внедрили подобные системы, отмечают существенное высвобождение ресурсов от рутинной работы. За всеми участниками процесса закрепляются формализованные зоны ответственности. Осуществляется полный контроль целевого исполнения бюджета проекта. Что особенно приятно, данные системы являются стопроцентно российскими разработками и внедряются отечественными компаниями», – добавил Дмитрий Мордвинцев.
Генеральный директор ООО «Дорианс» Сергей Луценко добавляет, что проектно-изыскательским компаниям, несомненно, в будущем помогут дроны в сочетании со спутниковыми тарелками. Уже сейчас на рынке есть несколько предложений, где беспилотник сверху снимает плановое положение, а стоящий на земле GNSS-приемник отслеживает его высотное положение. С помощью такой комбинации можно производить топографическую съемку и осуществлять сопровождение строительства. Также, на его взгляд, со временем в строительство ворвется технология 3D-печати. И это будет печать по заранее разработанным чертежам из различных материалов, не только из полимеров, но и из стали с бетоном.
Мнение
Кирилл Няшин, начальник отдела по информационному моделированию строительства компании «Ренейссанс Констракшн»:
– В настоящее время для небольших объектов наблюдается уход проектирования в облачные сервисы. Также для них задействуется лазерное сканирование. Это помогает получить более точные объемы работ, материала, а также рассчитать их стоимость. При этом 4D-моделирование в таких проектах обычно задействуется для разделов конструктивных решений и фасадов. Для крупных и ответственных объектов уход в облако пока сомнителен с точки зрения безопасности. Кроме того, существует вероятность закрытия облачных решений для объектов госзаказа. Соответственно, данный фактор будет тормозить развитие облачных решений на всех этапах проектирования в данном сегменте.
Тем не менее, в целом технологии развиваются очень быстро. Все более обыденными становятся использование эксплуатационной модели здания, безбумажный прием объектов в экспертизу. Также все более активно задействуются на строительной площадке AR-технологии для контроля монтажа, проводятся VR-конференции между географически отдаленными офисами для обсуждения модели объекта.
Тимофей Татаринов, генеральный директор IТ-компании «Мобильные решения для строительства»:
– В проектировании действительно все активнее заметен переход на BIM. В строительстве же цифровые технологии стоит делить на «человеческие» и инструментальные. Инструментальный контроль осуществляется при помощи дронов, лазерного сканирования, облака точек. Хотелось бы верить, что через пять лет в строительной сфере нас ждет повсеместное использование компактных лазеров, сканеров или дронов, которые будут оперативно передавать статус текущего хода строительства. Тем более, что многие из используемых сейчас технологий становятся с каждым годом доступнее.
«Человеческие» технологии – это визуальный контроль качества, к которому наблюдается растущий интерес. Судя по нашим клиентам, компании с большими объемами застройки нацелены на создание единого информационного пространства для обмена данными. Особенно важно для развития отрасли, чтобы аналоговый общий журнал работ перешел в цифровой формат. Технически для этого все готово.
Новых IT-технологий в строительной сфере не появлялось давно, все было разработано в 1990-х, 2000-х и 2010-х годах. Сейчас нужно смотреть на то, какие решения появляются на основе этих технологий: искусственный интеллект, Big Data, VR/AR. Но например, VR на строительной площадке пока не находит нормального применения, в лучшем случае – используется в обучении.
Искусственный интеллект и Big Data – это то, куда все идет. Все это может применяться как руководителями, директорами по строительству, генеральными директорами, так и непосредственно исполнителями, инженерами. Однако сейчас таких решений нет не только в России, но и за рубежом.
Игорь Тихонов: «Без «цифры» сегодня остаться в числе лидеров невозможно»
Цифровые технологии проникают во все сферы строительного бизнеса. Без их внедрения и использования остаться сегодня на лидерских позициях и успешно конкурировать невозможно, сообщил «Строительному Еженедельнику» Игорь Тихонов, руководитель проектного отдела ООО «Пейкко» (российское подразделение финского холдинга Peikko).
– Цифровизация получает все большее развитие и даже стала темой одного из нацпроектов. Что в этой сфере делается в компании «Пейкко»?
– Сегодня в строительной отрасли активно применяются технологии информационного моделирования. BIM, роботизация и 3D-печать стали неотъемлемыми составляющими современного строительного производства. Компания «Пейкко» как один из лидеров в области производства изделий для сопряжения железобетонных конструкций использует самые передовые технологии в этом направлении. Без использования инноваций любая компания сегодня не только не сможет удержать лидерства, но и просто конкурировать на рынке ей будет затруднительно.
Напомню, в апреле 2018 года в Санкт-Петербурге группой компаний «Пейкко» был открыт новый современный завод. Для этого нами было приобретено промышленное здание площадью более 7,5 тыс. кв. м, а также закуплено высокопроизводительное европейское оборудование. Общий объем инвестиций в проект превысил 420 млн рублей. На предприятии запущено производство стальных закладных деталей, а также флагманского продукта – композитной балки DELTABEAM.
Для их расчета и проектирования в компании «Пейкко» был разработан собственный программный модуль Peikko Designer, легко интегрируемый с технологиями BIM и ERP, которые значительно упрощают взаимодействие между всеми участниками строительного процесса, позволяют ускорить проектирование и снизить вероятность ошибок.
– Вы считаете цифровизацию в строительной сфере процессом безальтернативным?
– Строительные конструкции становятся все более уникальными и, следовательно, требуют более тщательного подхода в проектировании, и, на наш взгляд, совершенно очевидно, что в самом ближайшем будущем двумерное проектирование уступит место пространственному моделированию. Современные решения позволяют организовать взаимодействие всех участников процесса за счет использования принципов 5D-проектирования. Наряду с техническими характеристиками здания, они позволяют учитывать такие важные факторы, как время и деньги, затраченные на его строительство.
В этой области компания «Пейкко» добилась ощутимых результатов, внедрив для ряда BIM-программ специальный модуль PRO DELTA, который позволяет заказчику в режиме реального времени отслеживать статус производства строительных конструкций, сроки поставки и стоимость. Это повышает удобство работы с нами для клиентов, а качественный сервис – это один из принципов нашей работы.
– Какие еще инновационные технологии используются в работе компании?
– Еще одним из новшеств, появившихся в области строительства за последнее время, является внедрение системы QR-кодов. С ее помощью можно получить доступ к полному объему технической документации в электронном виде, в том числе инструкциям по монтажу и сборочным чертежам, непосредственно находясь на строительной площадке, имея под рукой любой современный смартфон.
«Пейкко» является одним из пионеров, внедряющих данную технологию у себя на производстве. Появление принципиально новых идей для решения актуальных производственных задач способствует повышению качества строительных процессов и всегда будет оставаться одним из приоритетных для нас направлений во всех областях деятельности.
– Как ваши клиенты оценивают усилия «Пейкко» в этой сфере?
– Как я уже говорил, качественная продукция в сочетании с качественным сервисом – это, пожалуй, основные факторы, благодаря которым наши партнеры выбирают продукцию «Пейкко». Использование новейших цифровых технологий позволяет гарантировать и то и другое на современном уровне. Поэтому реакция постоянных клиентов (а их у нас более 250 – по всей России: от Калининграда до Владивостока, не говоря уже о заказчиках Финляндии, Швеции, Норвегии и других стран, с которыми мы работаем) на новации самая позитивная.