Теплоизоляция
Одной из важнейших задач, которую приходится решать при возведении зданий и сооружений, признается применение эффективной термозащиты. Появление новых теплоизоляционных материалов решило массу проблем энергоэффективности строений. Массовое использование утеплителей позволило оптимизировать расходы на строительство, увеличить срок эксплуатации зданий, улучшить микробиологические показатели, помогло формировать и поддерживать благоприятный микроклимат внутри помещений здания.
До середины двадцатого века теплоизоляция применялась в строительстве не повсеместно. Поэтому, чтобы температурный режим в здании был комфортным для работы и проживания людей, приходилось возводить дома и сооружения с толстыми стенами и массивными перекрытиями. Например, дома «сталинской» застройки. При таком типе строительства многоэтажных зданий нагрузка на фундамент была колоссальной. Основание дома проектировалось с учетом громадных напряжений и использованием больших затрат стройматериалов. В результате постройка требовала больших финансовых вложений. На смену мастодонтам «сталинской» архитектуры пришли «хрущевки». На Втором Всесоюзном съезде строителей Н.С. Хрущев резко раскритиковал существующие концепции в строительстве и назвал расточительством существующие методы. И курс был взят на железобетонные конструкции. Такие дома имели низкую энергоэффективность, плохо отводили водяные пары, формировали внутри неблагоприятный микроклимат. Стены, углы часто покрывались плесенью и собирался конденсат. Перестройка экономики страны на рыночные рельсы внесла существенные изменения в технологию строительства. Застройщик стал задумываться об уменьшении затрат на материалы путем облегчения фундамента, стен и кровли, но без снижения показателей теплопотерь. Решить эту задачу помогает использование теплоизоляции.
Классификация теплоизоляционных материалов
К современным теплоизоляционным материалам предъявляют жесткие требования. Теплоизоляция дома должна быть энергоэффективной, легкой, экологичной, обеспечивать звукоизоляцию и паро- проницаемость, не быть гигроскопичной и горючей. Теплоизоляцию классифицируют по нескольким признакам.
По принципу действия:
- Отражающая. Действие выстроено на отражении инфракрасных лучей от поверхности изоляции обратно в помещение.
- Предотвращающая. Предотвращает изменение температуры, как холода, так и тепла, благодаря низкой теплопроводности.
По назначению:
- Промышленная. Применяется для тепловой изоляции промышленного оборудования: фильтров, емкостей, термонагруженных объектов
- Строительная. Используется для тепловой изоляции и снижения теплопотерь при строительстве зданий и сооружений, в том числе частного строительства.
- Трубная. Предназначена для снижения теплообмена между внешней средой и инженерными коммуникациями. Бывает «горячего» применения, когда температура носителя в системе выше температуры окружающего воздуха; «холодного» - температура носителя ниже температуры окружающего воздуха.
По материалу изготовления:
- Органические. Производят из органического сырья природного происхождения: древесины, торфа, сельскохозяйственных отходов и тому подобного; и сырья, полученного в результате органического химического синтеза: пенополистирол, пенополиуретан, поливинилхлорид и другие. Недостатком теплоизоляции из природных материалов служит влагопроницаемость, склонность к разложению, горючесть.
- Минеральные. Неорганические теплоизоляционные материалы изготавливают из расплавов шлаков- отходов металлургической промышленности, и некоторых геологических пород. К минеральным утеплителям относят минеральную вату, стекловолокно, вспененное стекло, обработанный перлит, ячеистый бетон.
- Смешанные или композиционные. К ним относят различные смеси на основе асбеста, перлита, вермикулита.
По внешнему виду теплоизоляция бывает:
- Шнуровая, рулонная: жгуты, маты, шнуры.
- Штучная: блоки, полые цилиндры, кирпичи, сегменты, маты, плиты.
- Сыпучая: перлит, вермикулит.
- Рыхлая: все виды ваты.
По структуре:
- Ячеистые. Пенобетон, пенопласт, пеностекло, вспененный полиэтилен и другие.
- Волокнистые. Стекловата, все виды минеральной ваты.
- Зернистые. Перлитовый песок, вермикулит.
По жесткости:
- Мягкие.
- Жесткие.
- Полужесткие.
- Повышенной жесткости.
По теплопроводности классифицируют на три класса:
- А- малой теплопроводности.
- Б- средней теплопроводности.
- В- повышенная теплопроводность.
По степени горючести:
- Сгораемая
- Несгораемая
- Трудносгораемая
- Трудновоспламеняющаяся
Основные характеристики теплоизоляции
Чтобы ответить на вопросы, для каких целей подходит тот или иной утеплитель и как сориентироваться в многообразии предлагаемых материалов, необходимо знать и понимать на какие характеристики следует обратить внимание при выборе.
Коэффициент теплопроводности - показатель способности материала передавать энергию от более нагретого участка к более холодному. Чем ниже этот показатель, тем лучшими теплоизоляционными свойствами обладает утеплитель. На теплопроводность влияют плотность материала, расположение и количество пустот, а также паропроницаемость и влагопоглощение. От теплопроводности зависит термическое сопротивление здания или сооружения. То есть насколько хорошо строение сохраняет тепло зимой и комфортную температуру летом.
Паропроницаемость - возможность водяного пара в результате диффузии проникать в толщу строительной конструкции с более нагретой стороны в менее нагретую до выравнивания парциального давления. К показателю паропроницаемости косвенно привязана важная строительная характеристика - точка росы. Это точка в строительной конструкции, в которой осуществляется переход влаги из газообразного состояния в жидкое- конденсация. Точка росы поддается расчету при проектировании. Желательно, чтобы точка росы находилась в толще несущей стены или в паронепроницаемом утеплителе. Конденсат в волокнистых утеплителях, обладающих хорошей паропроницаемостью противопоказан, так, как ведет к накоплению влаги и снижению изолирующих свойств.
Гигроскопичность или влагопоглощение- способность материала впитывать влагу и удерживать ее. Чем выше этот показатель, тем быстрее теплоизолятор утрачивает свои теплоизоляционные качества.
Плотность – это масса вещества в определенном объеме. Чем ниже плотность, тем легче материал и тем меньше нагрузка на возводимую конструкцию.
Экологичность. Показатель экологичности очень важен для сохранения здоровья. Утеплитель не должен вызывать аллергии, оказывать воздействия на кожу, дыхательные пути.
Огнестойкость. Способность материала выдерживать воздействие высокой температуры и пламени без потери своих свойств. Рассчитывается в минутах.
Прочность - реакция материала на различные виды деформации без потери и ухудшения его целостности и заданных свойств.
Назначение теплоизоляционных материалов
Какую теплоизоляцию выбрать зависит от конкретных целей утепления. В строительстве разделяют теплоизоляцию кровли, перекрытий, стен, внутренних перегородок, фундамента.
Капитальные стены утепляют снаружи, для защиты от промерзания и влаги. Если стена из кирпича или бетона для утепления отлично подходят пенополистирольные плиты или по-другому, экструзионный пенополистирол. 5 см. такого утеплителя приравниваются по теплопроводности к 70 см. кирпича. Этот утеплитель имеет очень низкий коэффициент теплопроводности, негигроскопичен, обладает низкой паропроницаемостью и высокой прочностью на сжатие. Все это делает его долговечным. Срок его службы обуславливается сроком эксплуатации здания. Прост и удобен в монтаже. Экологичность подтверждена сертификатами и санитарно-эпидемиологическими заключениями.
Получают материал смешиванием гранул полистирола при повышенной температуре и давлении, с введением вспенивающего агента, и последующим выдавливанием из экструдера.
Предшественником экструдированного пенополистирола выступает пенопласт. Производятся материалы из одного и того же сырья, но по разным технологиям. Экструдированный пенополистирол выигрывает у пенопласта по показателям прочности, влаго- и- паропроницаемости.
Деревянные стены из бруса утепляют «дышащими» утеплителями. К ним относят минеральные ваты на основе базальтового утеплителя – «каменная вата», стекловолокна- «стекловата»
Каменная вата производится путем плавления камня при температуре 1500 0С. В результате этого получается подобие вулканической лавы, которую при помощи центробежной силы и резкого охлаждения превращают в волокна будущего утеплителя. Для получения каменной ваты подходят не все камни. В качестве сырья используют изверженные горные породы габро-базальтовой группы, отличающейся своей высокой прочностью. Каменная вата характеризуется повышенной огнестойкостью, низкой теплопроводностью. 5см. каменноватной плиты приравнивается по теплопроводности к 15 см стены из бруса, 80 см. стены из полнотелого кирпича или 2 м. железобетона. Выпускают каменную вату в виде мягких, жестких плит, матов и формованных изделий.
Стекловата производится по схожей технологии, но сырьем служат отходы стекольной промышленности. Стекловата имеет отличные показатели по теплопроводности. Но не лишена недостатков. Как и все виды минеральных ват склонна к накоплению влаги. При монтаже требуется обязательная защита кожи и органов дыхания от стеклопыли.
Минеральные ваты необходимо защищать от водяного пара пароизоляционной мембраной, проводящей пары влаги только в одну сторону. Очень важно не перепутать сторону, которая должна быть обращена к утеплителю.
Бывают ситуации, когда внешнее утепление невозможно. Тогда прибегают к внутренней теплоизоляции. Выполняя работы, необходимо строго придерживаться правил по внутреннему теплоизолированию помещений, чтобы не навредить элементам строительной конструкции и исключить негативное воздействие на микроклимат и воздухообмен. В противоположность наружному утеплению, где допускается использование паропроницаемого утеплителя, при внутреннем необходимо исключить попадание паров влаги в теплоизолирующий материал. Для этого используют паронепроницаемый утеплитель или монтируют сплошную пароизоляционную защиту. Допускается использование минеральных ват, пенополиуретана, графитового пенополистирола- пенопласт, с вкраплениями гранул, окрашенных графитовой краской. Графитовая краска хорошо отражает тепловое излучение. Внутреннее утепление невозможно без качественной вентиляции. Отсутствие вентиляции неизбежно приведет к повышению влажности в помещении, образованию конденсата, развитию плесени.
Методика теплорасчетов внутреннего и наружного утепления приведены в СП23-101-204 «Проектирование тепловой защиты зданий».
Перегородки, деревянные перекрытия. В качестве утеплителя перекрытий хорошо подходят стекловата и минеральная плита, вспененный полиэтилен, эковата, жидкий утеплитель.
Эковата- рыхлое целлюлозное волокно, изготавливаемое из макулатуры с добавками из антисептиков и антипиренов. Структура материала позволяет применить механический метод утепления. При утеплении кровли, перекрытий, стен в каркасных домах эковата подается с помощью выдувных машин по шлангу в каркасную конструкцию между стропил или стоек стен за пленку. При этом волокна утеплителя поступают в самые труднодоступные полости и зазоры, образуя непрерывный и бесшовный теплоизоляционный контур. Поверхности утепленные эковатой «дышат» подобно деревянным, что способствует поддержанию микроклимата. Благодаря добавкам из антисептиков и антипиренов, теплоизолятор относится к группе долговечных и трудновоспламеняемых материалов, не подвержен гниению и воздействию грызунов и насекомых.
К жидким утеплителям относят пенополиуретан и термокраски. Оба вида наносятся на поверхность напылением. Пенополиуретан при застывании образует пористую структуру. Дает отличное сцепление с поверхностью, позволяет изолировать труднодоступные места. Имеет низкий коэффициент теплопроводности. Но в крупных объемах строительства требуется применение специального оборудования, и квалифицированного персонала, что влияет на стоимость работ. Срок службы пенополиуретана более 40 лет.
Термокраски выпускают на акриловой или водной основе. В качестве наполнителя выступают частицы вспененного стекла, перлит, керамические микросферы, стекловолокно. Отличается от других видов утеплителя минимальной толщиной слоя. Слой толщиной в 1миллиметр термокраски обеспечивает термическую защиту как пятисантиметровый слой пенопласта. Может наноситься на внешние и внутренние поверхности, обеспечивать термозащиту в местах со сложной геометрией. Но имеет существенный недостаток – это цена.
Перечисленные материалы, за исключением термокраски, дополнительно играют роль шумоизоляции в помещении и снижают шумовую нагрузку на 40-50 Дб.
Фундаменты. Теплоизоляция фундамента необходима для предотвращения его промерзания, противодействию пучению грунтов и обеспечению лучшей гидроизоляции. Лучше всего на эту роль подходит экструдированный пенополистирол или напыляемый пенополиуретан. При чем плитный фундамент может быть утеплен только в процессе возведения. Последующий монтаж утеплителя не принесет должного эффекта. Чтобы избежать промерзания грунта и его пучения, вокруг дома создают отмостку с прослойкой теплоизоляционного материала.
Как правильно выбрать теплоизоляцию
При всем широком богатстве выбора на рынке теплоизоляционных материалов, существуют строгие критерии выбора теплоизоляции. Материал и толщину теплоизоляции определяют при помощи теплотехнического расчета. Утеплитель следует использовать строго по назначению. Если материал предназначен для фундамента, значит для фундамента, для утепления стен снаружи – значит именно таким образом применять материал. Необходимо учитывать требуется ли гидро- и- пароизоляция при утеплении и заранее продумать эти моменты. При производстве работ по утеплению важно знать, что изолировать от внешних температурных воздействий необходимо всю площадь поверхностей. Помимо утепления стен, уделяют особое внимание чердачным перекрытиям, так как через них теряется наибольшая часть тепла. Обязательно следует утеплять сложные геометрические поверхности и выступающие за утеплитель элементы. Иначе будут образовываться мостики холода, которые значительно снижают эффект утепления. Швы в неволокнистых теплоизоляторах таких, как, например, пенополистирол, должны герметизироваться монтажной пеной.
Таким образом нельзя сказать однозначно точно: какой утеплитель лучше. К данному вопросу нужно подходить взвешенно и расчетливо. В каждом отдельном случае будет задействован конкретный вид теплоизоляции или комбинация теплоизоляционных материалов.
На новом уровне
За счет внедрения «цифры» новые геодезические приборы стали более технологичными. Однако значительная часть такого оборудования производится в зарубежных странах и не всегда доступна по цене геодезистам.
За последние 10–15 лет рынок геодезических приборов значительно изменился. Уже использующееся специалистами оборудование получило электронную начинку. Также появились приборы, о которых ранее геодезисты даже мечтать не могли.
Быстрее и точнее
По словам генерального директора ООО «Геодезические приборы» Михаила Алексеева, в настоящее время при выполнении геодезических работ наблюдается тенденция повышения эффективности производства за счет внедрения цифровых технологий. Решению этой задачи и способствуют современные геодезические средства измерений, такие как электронные тахеометры, спутниковая аппаратура, лазерные сканеры. Они дают возможность проводить исследования более точно и в сжатые сроки.
Так, отмечает Михаил Алексеев, выпускаемые сейчас модели электронных тахеометров имеют безотражательный режим работы дальномерного канала. Причем у большинства моделей дальность измерений при использовании этого режима составляет не менее 500 м, а у некоторых – может достигать 2 км. Также у этих приборов существенно увеличился объем памяти, появилась возможность подключения внешних накопителей информации и отказа от кабельных соединений. Заметно расширилось применение роботизированных моделей, позволяющих дистанционно управлять процессом измерений и повышать производительность работ.
«Пользовательский сегмент спутниковой геодезической аппаратуры опирается сегодня на многочастотные и многосистемные спутниковые приемники интегральной конструкции, включающей и антенну GPS (GNSS), и элементы питания, и модемы, и модуль Bluetooth. Активно развиваются сети базовых станций, и открывается возможность работы с одним спутниковым приемником. Такие сети, в частности, созданы в Петербурге и Ленобласти», – отмечает Михаил Алексеев.
По словам экспертов, также в геодезическом сопровождении строительства начали активно использоваться комплексные системы, реализующие BIM-технологии. В качестве источников измерительной информации в этих системах используются лазерные 3D-сканеры, а также беспилотные летательные аппараты (БПЛА) с установленными на них различными датчиками, в том числе фотокамерами, сканерами и т. д.
Руководитель конструкторского бюро Optiplane Кирилл Яковченко рассказывает, что геодезисты уже сейчас применяют в качестве БПЛА с использованием методов фотограмметрии квадрокоптеры (для небольших площадей) и самолеты-планеры (для протяженных крупных объектов). «Для использования планера требуется квалификация пилота самолета, которой большинство геодезистов не обладает, и быстро получить ее невозможно. Поэтому геодезисты раньше вынуждены были для больших площадей либо нанимать пилотов, либо делать все по старинке наземным способом. Сейчас наиболее удобным и универсальным промышленным БПЛА является винтокрыл, который позволяет использовать все плюсы квадрокоптера и в то же время имеет большую дальность полетов для съемки больших площадей. На сложных участках гибридный дрон в 5–10 раз выгоднее квадрокоптера», – добавляет он.
Цена вопроса
Значительная часть современного высокотехнологичного геодезического оборудования производится в зарубежных странах. Как отмечают игроки рынка, процесс импортозамещения в данном сегменте развивается весьма слабо.
Сама стоимость ряда видов оборудования за последние 3-4 года несколько снизилась. Это связано с более глубоким и масштабным проникновением «цифры» во многие отрасли и, как следствие, удешевлением этого процесса. Тем не менее, новые приборы не всегда доступны по цене российским геодезическим организациям. Для небольших компаний приобретение такой техники – большие финансовые затраты, хотя потом они чаще всего окупаются.
Заместитель генерального директора ООО «Гильдия Геодезистов» Сергей Лазарев отмечает, что сейчас наиболее активно в геодезии применяются электронные тахеометры и приемники GPS, GNSS. По его мнению, за последние 10 лет и те, и другие действительно немного преобразились, хотя и без добавления инновационных функций, которые сильно ускорили бы работу. «Очень сильно подешевело GPS-оборудование. Так, 10 лет назад комплект стоил от 1 млн рублей, а теперь можно купить его за 150–300 тыс. И это при том, что стоимость отечественной валюты гораздо ниже, чем раньше. Электронные тахеометры также изменились в лучшую сторону, но без такого резкого снижения цены. Это связано с тем, что это – оптические приборы, которые требуют очень серьезного оптико-механического производства. Другое дело GPS, где почти весь прибор состоит из одной микросхемы. К сожалению, инновационные роботизированные оптические приборы плохо приживаются в России, ввиду кризисного состояния строительного рынка, а следовательно, и рынка инженерных изысканий. Так, на стройплощадках в Европе почти все тахеометры – новые и роботизированные, а у нас 5–15-летние модели. Другие приборы компании просто не могут себе позволить», – полагает он.
Сергей Лазарев также вспоминает, что недавно на выставке он видел простой квадрокоптер, но с установленной мобильной GPS-антенной. Таким образом, из-за дешевизны GPS-микросхем появились новые дешевые летательные аппараты для точной аэрофотосъемки небольших территорий (8–10 га). «Правда, вряд ли они смогут изменить ситуацию на рынке. Не так давно в Петербурге введен запрет на полеты БПЛА в городском пространстве, а получение разрешения – крайне утомительный и долгий процесс», – отмечает специалист.
Напомним, в 2016 году на федеральном уровне уже были ограничены возможности использования БПЛА. Согласно принятому закону, аппараты, взлетная масса которых более 250 г, должны быть зарегистрированы и сертифицированы. В госорган необходимо предоставить план полета и получить отметку о его согласовании. Однако в настоящее время эти правила использования БПЛА как гражданами, так и многими организациями не исполняются. Тем не менее, представители геодезических компаний опасаются, что их беспилотники стоимостью в несколько сотен тысяч рублей могут быть без предупреждения сбиты сотрудниками правоохранительных органов.
Мнение
Сергей Лазарев, заместитель генерального директора ООО «Гильдия Геодезистов»:
– Серьезного процесса импортозамещения в производстве приборов для геодезии не существует. На заводе УОМЗ в Екатеринбурге выпускают тахеометры. Также в России осуществляется производство приборов фирмы Leica, но это скорее очень крупная «узловая сборка». Ряд российских компаний производит GNSS-оборудование, заказывая комплектующие в Китае и США. В общем и целом, производства полного цикла приборов для гражданских геодезических работ у нас нет. Возможно, существует такое военное производство для ГЛОНАСС-приемников, но это не массовый сегмент. Выбор геодезиста очевиден – это использование импортной техники.
БКДК: стабильный рынок в ожидании взлета
Большепролетные клееные деревянные конструкции (БКДК) –
уникальный материал, с каждым годом увеличивающий свою долю рынка по всему миру.
При этом на строительном рынке России БКДК занимают довольно скромное место, чему, по мнению экспертов, есть ряд объективных причин.
Долговечно, прочно, красиво
БКДК были изобретены еще в начале XX века в Германии, где их использовали при строительстве объектов железнодорожной инфраструктуры. Основным недостатком первых таких конструкций была высокая подверженность материала деформации под воздействием атмосферных осадков и агрессивных сред.
Поэтому массовое использование БКДК в строительстве началось лишь в середине ХХ века, после изобретения целого ряда химических составов для защиты древесины.
По словам директора по маркетингу ООО «Большепролет» Екатерины Фурман, БКДК целесообразно использовать в пролетах длиной от 8 м, что актуально для самых разных помещений, где нет возможности поставить опоры для устройства кровли и перекрытий.
Сегодня эти конструкции находят применение в самых разных областях строительства по всему миру. «БКДК имеют широкую область применения и активно используются при строительстве спортзалов, аквапарков, бассейнов, складов, жилых помещений. Помимо этого, они имеют повышенную химическую и огнестойкость по сравнению с металлическими и железобетонными конструкциями и могут быть использованы для складов материалов с повышенной химической активностью. Также клееные конструкции – стильный элемент декора, который, неся конструкционные нагрузки, отлично смотрится практически в любом интерьере, не требуя дополнительной отделки», – отмечает директор «Первой Загородной Компании» Андрей Кирюшин.
В России и в мире
По данным экспертов, в западных странах более 70% спортивных сооружений, концертных залов и стадионов и других крытых большепролетных зданий возводятся по технологии БКДК. Количество же таких зданий исчисляется тысячами.
К наиболее известным объектам можно отнести такие сооружения, как концертный зал Z´enith de Paris, испанский отель Metropol Parasol, железнодорожный вокзал в Берне (Швейцария), целый ряд куполообразных складских помещений (в Италии внешний диаметр купола одного из них составляет 144 м, а высота – почти 40 м), множество офисных и, конечно, жилых зданий.
Норвегия может похвастаться самым высоким в мире зданием, построенным по технологии БКДК. В марте 2019 года состоялось открытие делового центра Mjоstаrnet Tower в Брюмундале. Высота 18-этажного здания (площадью 11,3 тыс. кв. м) составляет 85,4 м.
В России объемы строительства объектов по данной технологии пока значительно отстают от зарубежной практики. О скромной востребованности таких конструкций на строительном рынке свидетельствуют и объемы производства – по данным экспертов Step Change Consulting, ежегодно в стране выпускается около 420 тыс. куб. м клееных конструкций из цельной древесины и 150 тыс. кв. м LVL-бруса – порядка 4–5% от мирового объема производства.
Между тем отечественные разработки в области БКДК начались еще в 1930-х годах. Но железобетон на время вытеснил «деревянные» технологии из массового строительства, однако постепенно они опять стали востребованы. Из них в военные и послевоенные годы по проектам Центрального НИИ промышленных строительных материалов в стране строились промышленные и производственные помещения, мостовые пролеты и т. д. После распада советской экономики такое строительство фактически прекратилось и получило новый виток развития лишь в новом веке.
По словам генерального директора Ассоциации деревянного домостроения Олега Паниткова, сегодня отношение к деревянному домостроению пусть небыстро и непросто, но меняется. «Мы уходим от образа некой баньки, простенького бревенчатого сруба к современным конструкциям и строительству, которое отличается качеством и скоростью, архитектурной привлекательностью и экономичностью, эффективностью и экологичностью, а главное – обеспечивает высокое качество жизни», – считает он.
Проблемы и перспективы
Одной из проблем, тормозящих развитие строительства с использованием БКДК в России, эксперты называют несовершенство законодательства.
«По нормам, действующим на территории РФ, эти конструкции должны иметь многократный запас прочности, из-за чего приходится увеличивать объем исходного материала, что ведет к удорожанию продукции. Нормы не менялись с советских времен, недавние поправки (сделанные в 2012 и 2014 годах) несущественны. Европейцы уже давно привели в соответствие с реалиями нормативную базу для применения БКДК, мы пока ожидаем», – говорит Екатерина Фурман.
Еще одной причиной низкой востребованности БКДК в России можно считать инертность мышления потенциальных заказчиков, которая сформировалась под влиянием многолетней самодеятельной работы компаний, занимающихся деревянным домостроением без соблюдения каких-либо технических норм и правил.
И, наконец, свою роль играет недостаток опыта, во многом утерянного за десятилетия. Так, если грамотно спроектировать объект с применением БКДК в стране может несколько организаций (ЦНИИСК им. В. А. Кучеренко, университеты Санкт-Петербурга, Москвы и Нижнего Новгорода), то вот архитекторов, готовых работать с данной технологией, пока недостаточно, говорят эксперты.
В ожидании взлета
Даже с учетом всех перечисленных проблем очевидные достоинства БКДК постепенно способствуют их возвращению на рынок. За последние годы в стране возведен целый ряд достойных объектов, не уступающих лучшим иностранным образцам.
Одной из первых ласточек стал казанский Дворец водных видов спорта, который построили к Универсиаде 2013 года. Далее с применением БКДК были построены аквапарк в Новосибирске, ледовая арена во Владивостоке, Олимпийская бобслейная трасса в Сочи, спортивно-концертный комплекс «М-1 Арена» в Петербурге и целый ряд спортивных объектов по программе «Газпром – детям». Компания Good Wood в 2014 году возвела самое высокое офисное здание из древесины в России – Good Wood Plaza, высотой 19,7 м.
Драйвером дальнейшего развития рынка БКДК могло бы выступить жилищное строительство. Тем более, что «увеличение применения деревянных конструкций» входит в число задач, ставящихся перед отечественной строительной отраслью нацпроектом в жилищной сфере. Но нока что здесь все упирается в недоработки российского законодательства. Тем не менее, проблема решается – участники рынка ждут завершения работы над целым пакетом необходимых документов.
По мнению технолога корпорации «Русь» Сергея Шинкаренко, еще одним из направлений развития российского рынка БКДК может стать мостостроение. Сегодня в России капитальных мостов из древесины практически не строится, даже в лесных районах страны, тогда как в Европе подобные сооружения весьма распространены, а их срок эксплуатации нередко превышает 50 и более лет.
Мнение
Екатерина Фурман, директор по маркетингу ООО «Большепролет»:
– Спрос на большепролетные конструкции сегодня достаточно устойчив, без значительных колебаний. Сказывается тенденция роста доверия к подобным зданиям – они сами себя демонстрируют, как, к примеру, внушительные по своим размерам и архитектурному исполнению спортивные дворцы. Заказчику БКДК при выборе поставщика в первую очередь следует обращать внимание на доверие рынка. Если в открытом доступе поставщик публикует информацию о выполненных объектах и устойчивой деятельности, то можно включить его в список претендентов. Далее обратить внимание стоит на удаленность предприятия от места строительства – транспортировка таких крупногабаритных изделий стоит дорого.
Андрей Кирюшин, директор «Первой Загородной Компании»:
– Заказчику стоит обратить внимание на репутацию поставщика, соблюдение им технологии производства, качество поставляемой продукции, а также на общую стоимость предложения. Нередки случаи, когда продавец манипулирует ценой кубометра, а она, как правило, не учитывает всех нюансов и неточно отображает стоимость заказа в целом.