Цифровой строительный контроль становится еще более востребованным


17.12.2020 11:21

Пандемия коронавируса ускорила цифровизацию строительного комплекса. Такое мнение уже неоднократно высказывали как представители профессионального сообщества, так и отраслевые чиновники. В том числе, в этом году заметно вырос спрос на услуги цифрового строительного контроля. Работы в рамках него в значительной степени могут проходить в дистанционном формате, с минимальным очным контактом всех задействованных специалистов. Выбранные решения позволяют быстро и точно оценить качество возводимых объектов.


Скоростная цифровизация

За последние месяцы, рассказал порталу ASNinfo.ru основатель компании «Мобильные решения для строительства» Тимофей Татаринов, действительно значительно возрос спрос на цифровые продукты для строительного контроля среди компаний - технических заказчиков. «Генподрядные организации также проявляют интерес к возможности экономить, оптимизируя работу на строительной площадке за счет цифровых инструментов для стройконтроля. Пиковыми в этом году для нас стали октябрь-ноябрь: единовременно в работу по внедрению мы взяли десять пилотных проектов. В целом «Мобильные решения для строительства» сфокусированы не просто на автоматизацию, а на цифровую трансформацию функций строительного контроля и управления строительством в целом. Компания провела цифровую трансформацию строительного контроля на более чем 700 объектах в 37 регионах России и в 2 городах Казахстана»,- отметил он.

Генеральный директор ООО «Ирбис-инжиниринг» Евгений Лужин добавляет, что цифровизация строительного контроля позволяет ускорить процесс выдачи предписаний, выданных инженером строительного контроля подрядчикам, позволяет видеть все дефекты (замечания) в режиме online 24/7 на любом устройстве из любого места, где есть интернет. Это позволяет значительно экономить время при обмене информацией, высвобождая его для принятия важных управленческих решений. Кроме того, очень удобно и наглядно наблюдать график выдачи замечаний строительного контроля и их устранения. В программном комплексе «МРС СтройКонтроль» можно вести аналитику замечаний, чтобы знать, какие меры предпринимать для недопущения подобных ситуаций.

«В условиях пандемии, да и не только ее, очень удобно замечания выдавать дистанционно, с указанием конкретных мест в проектной документации на нужном листе, это видят все заинтересованные лица — генподрядчик, заказчик и т.д. Как показывает наша практика, всё больше и больше клиентов при запросе услуг строительного контроля или при формировании технических заданий, учитывают в требованиях использование на своих объектах программных комплексов по строительному контролю. Ну и конечно, чтобы цифровое приложение стало конкурентным преимуществом и эффективным инструментом в руках инженера строительного контроля, надо учить людей с ним работать. Чему мы в своей компании уделяем немало времени»,- подчеркнул он.

По словам регионального менеджера продукта PlanRadar в России Виталия Березки, сейчас в сферах строительства и недвижимости происходит скоростная цифровизация всех процессов – к этому вынуждает ситуация с пандемией и ограничениями. По нашему мнению, цифровизация и повышение эффективности работы – это основные тренды в строительстве и управления недвижимостью. «Пожалуй, наибольший интерес к новым цифровым продуктам наблюдается сейчас со стороны девелоперов. Переход застройщиков жилой недвижимости на проектное финансирование и «эскроу-счета», в значительной степени повлияли на ужесточение требований к качеству и срокам выполнения работ. Поэтому, применение инновационных решений, которые помогают сокращать сроки строительства, оперативно отслеживают дефекты и позволяют оптимизировать рабочие процессы и контроль этапов строительства – все это стало приоритетом»,- считает специалист.

По отдельности и сообща

Эксперты отмечают, что цифровой строительный контроль в настоящее время включает в себя множество различных опций, продуктов, решений. У заказчиков должно быть понимание, каким они его видят, какие задачи предстоит выполнить «цифре». От данных условий будет зависеть выбор технологического решения.

Начать нужно с того, поясняет коммерческий директор «СОДИС Лаб» Глеб Барон, что строительный контроль — не самоцельный процесс, а часть общего процесса строительства. «Сегодня на рынке существует множество решений для строительного контроля, но нужно учитывать, что большинство из них – «кусочные». Если провести аналогию,-  продолжает он, - то в основном вся цифровизация в подобных решениях сводится к функционалу электронной записной книжки. Удобнее ли это, чем бумажная записная книжка? Безусловно. Но при подобном подходе упущен самый важный момент — с такими данными дальше ничего нельзя сделать. Строительной отрасли сегодня нужные полноценные сквозные решения с реальной автоматизацией процессов. Например, любые дефекты должны отображаться автономно, но при этом на BIM-модели они должны быть привязаны непосредственно к объекту. Это позволяет автоматически запускать в работу задачу по его устранению. То есть стройконтроль должен стать частью всего бизнес-процесса строительства. Отличительной особенностью Lement Pro как раз является то, что стройконтроль в нашем решении является частью общего процесса строительства. То есть пользоваться данными могут все участники проекта. Причём как внутренние, так и внешние».

По словам Тимофея Татаринова, главная особенность оцифровки строительных объектов непосредственно на стройке - необходимость применения максимально простых и удобных IT-решений, которые ускорят сбор данных с объекта, актуализируют их и сделают прозрачным управление качеством, объемами и сроками. «При выборе решения стоит обращать внимание на наличие команды внедрения и сопровождения: неважно приобретаете вы решение у интегратора или вендора напрямую - это ключевой показатель. ПО само себя не внедрит. Именно методология и опыт внедрений отличают качественные и эффективные IT-продукты для применения на стройке. Основной достаточный функционал для успешных систем цифрового строительного контроля - это работа программы на мобильных устройствах, возможность работы с актуальной проектной документацией как онлайн, так и оффлайн, с учетом специфики строительства, фотофиксация и локализация замечаний прямо на чертежах. А также создание предписаний в автоматическом режиме, назначение ответственных в программе, оповещения и пуш-уведомления»,- сообщил он.

Подстраиваясь под задачи

Цифровой строительный контроль предполагает выполнение множество задач, соответственно на рынке есть достаточно высокий выбор продуктов как специализированного, так более расширенного действия.

«Флагманский продукт компании МРС “СтройКонтроль” применяют при строительстве жилых комплексов 19 девелоперов из ТОП-100 РФ, а также при строительстве гражданских, инфраструктурных, транспортных, промышленных, нефтехимических объектов и на нефтегазовых месторождениях. Применение облачных программных продуктов “МРС” дает сокращение времени этапа приемки работ от 30%; доказанную экономию от 480 руб. с кв.м. (в жилищном строительстве); повышение эффективности работы строительного контроля от 30%; ускорение устранения нарушений и отработки предписаний до семи раз»,- рассказал Тимофей Татаринов.

По словам генерального директора Группы компаний «Эттон» Ефима Климова, регулярные изменения в законодательстве, локальных нормативных актах требуют адаптации функциональных возможностей системы, поэтому важным параметром системы является возможность расширения архитектуры. «Базовые задачи, решаемые системой «Строительный контроль», которую разработала компания «Эттон» – это доступ к актуальным данным о производимых на объектах работах, автоматическое заполнение форм документов, анализ производительности труда. Поскольку система предназначена для обработки больших объемов данных нужно предусматривать наглядное представление данных, понятную структуру и логичную навигацию. Модулем «Строительный контроль» от компании «Эттон» пользуются службы технического надзора регионов России»,- добавил он.

Как сообщил региональный директор направления «Технологии для строительства Тримбл РУС» Денис Купцов, ключевой программный продукт Tekla Structures, позволяет создавать модели, проработанные от сварки в металлоконструкциях, болтовых соединений до мельчайших деталей в железобетонных изделиях. «С помощью этой модели на стройплощадке можно формировать календарные графики строительных работ, проверять конструкции на пересечения с инженерными сетями, получать точную ведомость стройматериалов в соответствии информацией, заложенной в 3D. Эта же ведомость может использоваться для заказа материалов на стройплощадку и контроля за их расходом»,- пояснил эксперт.

Виталий Березка отмечает, что главная отличительная особенность австрийского решения PlanRadar для проведения строительного контроля заключается в очень понятном интерфейсе. Он настолько прост, что пользователь за десять минут может понять возможности программы и всего за пару часов может настроить собственные формы для предписаний и актов, шаблоны для автоматического ведения отчетности при помощи простого перетаскивания полей, без надобности привлекать аналитика, программиста и дизайнера.

«Также данным решением предлагаются уникальные для российского рынка функции работы с технологией BIM на мобильном устройстве при осуществлении строительного контроля и инспекций объектов. Продукт недавно вышел на российский рынок и делает максимальный акцент на локализацию в нашей стране. Добавлю, что компания PlanRadar все еще (работает с 2013 года) является стартапом и привлекает инвестиции для расширения своего функционала. Организация заняла второе место среди европейских стартапов, получивших самые высокие инвестиции в 2020 году. С помощью PlanRadar более 25 тыс. проектов, включая таких гигантов как STRABAG и SIEMENS, в 45 странах экономят минимум 7 часов в неделю, оптимизируя свои процессы в цифре»,- добавил Виталий Березка.


АВТОР: Виктор Краснов
ИСТОЧНИК ФОТО: http://profcm.ru/

Подписывайтесь на нас:

Купол как уникальная конструкция


21.10.2019 15:28

Лаборатория деревянных конструкций ЦНИИСК им. В. А. Кучеренко АО «НИЦ «Строительство» совместно с ООО «ЦНИПС ЛДК» разрабатывает проекты большепролетных каркасов покрытия из клееных деревянных конструкций (КДК). По их проектам построено более 10 аквапарков по всей России. Крупнейший из них – аквапарк «Питерлэнд» в парке 300-летия Санкт-Петербурга. Об особенностях проекта «Строительному Еженедельнику» рассказал заведующий лабораторией деревянных конструкций ЦНИИСК им. В. А. Кучеренко Александр Погорельцев:


– В бассейнах и аквапарках КДК имеют преимущества перед конструкциями из металла или железобетона. Для них хлорирование или озонирование воды создает агрессивную среду, нейтральную для древесины.

В ТРК «Питерлэнд» смонтирован ребристый купол диаметром 90 м и высотой 45 м. Особенности конструкций связаны в основном с его габаритами. В плане меридиональные ребра купола опираются с шагом 14,5 м на нижнее железобетонное кольцо и на стальное верхнее кольцо диаметром 5 м. Основные ребра длиной около 60 м выполнены в виде серповидных сборных ферм и сами по себе являются уникальными в части принятых конструктивных решений, изготовления, сборки и монтажа. На эти ребра с шагом 6 м опираются девять криволинейных кольцевых элементов, из которых два – верхний и нижний – являются опорами для 60 промежуточных меридиональных ребер. Нижний кольцевой элемент выполнен в виде горизонтальной фермы, воспринимающей реакции опор от промежуточных ребер и нагрузки от кольцевой технологической площадки. Остальные кольца являются распорками между меридиональными ребрами для обеспечения их устойчивости.

В конструкции купола реализованы основные принципы «системы ЦНИИСК», все основные узлы и стыки поясов серповидных ребер выполнены на наклонно вклеенных стержнях и V-образных анкерах. Это уникальная система узловых соединений, основанная на вклеивании в древесину арматурных стержней периодического профиля. Россия обладает приоритетом в области подобных узловых соединений деревянных конструкций. 

Все жесткие стыки ребер и соединения закладных деталей со стержнями, вклеенными на заводе и на монтаже, выполнены ручной сваркой. Экспериментальные исследования, проведенные в ЦНИИСК с целью оценки влияния сварки на соединения, показали, что существующий «психологический» барьер при сварке деревянных конструкций успешно преодолевается. При соблюдении нескольких рекомендаций сварка практически не сказывается на несущей способности соединений.

Меридиональные ребра состоят из четырех отправочных блоков полной заводской готовности, соединяемых на монтаже жесткими стыками на сварке. Все блоки по торцам снабжены выпусками V-образных анкеров и закладными деталями.

Проблемы допусков по длине для меридиональных ребер решены с помощью зазоров около 40 мм между торцами поясов, заполняемых полимербетоном после сварки V-образных анкеров и стальных полос. Этим достигается плотный контакт по площадкам сжатия.

Треугольная решетка меридиональных ребер включает горизонтальные и вертикальные элементы. Горизонтальные соединены с поясами на цилиндрических нагелях и шпильках, а вертикальные – с усилием растяжения до 40 т – путем сварки выпусков вклеенных стержней и закладных деталей на раскосах.

Сборка и монтаж меридио­нальных ребер производились в три этапа: сначала на жестком горизонтальном стенде производилась предварительная сборка блоков в проектных габаритах, затем окончательная сборка в вертикальном стальном стенде с последующей установкой блоков в проектное положение.

Из-за кризиса 2008 года после монтажа каркаса купола строительство было приостановлено – и возобновлено только в 2011 году. В результате влажность древесины, не защищенной от атмосферных осадков, значительно превысила величину равновесной влажности, соответствующей условиям эксплуатации. Быстрое завершение строительства и ввод в эксплуатацию могли привести к неравномерной усушке древесины и, как следствие, к появлению значительных трещин и расслоений. Разработанные в ЦНИИСК рекомендации по обеспечению температурно-влажностного режима при завершении строительства позволили избежать этих проблем.


ИСТОЧНИК: СЕ №31(891) от 21.10.2019
ИСТОЧНИК ФОТО: Лаборатория деревянных конструкций ЦНИИСК им. В. А. Кучеренко
МЕТКИ: ПИТЕРЛЭНД

Подписывайтесь на нас:

Цифровые технологии – спорту


21.10.2019 15:00

Олимпиада в Сочи и Чемпионат мира по футболу – 2018 задали новые требования к проектированию и строительству спортивных сооружений в России. О том, как создать современный спортивный объект мирового класса и уложиться в жесткий дедлайн, рассказывает руководитель отдела ОВиКВ компании «Метрополис» Сергей Брюзгин.


Проектирование спортивных сооружений – задача сложная и ответственная. Объекты такого рода сочетают в себе яркую, запоминающуюся архитектуру и комплекс сложнейших инженерных систем. Именно поэтому проектировщики постоянно находятся в поиске новых эффективных решений для работы с такими проектами.

В основе – технологии

Одними из наиболее успешных разработок, активно используемых проектировщиками, являются BIM-технологии. Их применение при проектировании современных сложных объектов, к числу которых относятся и спортивные сооружения, является одним из ключевых условий успешных инвестиций заказчика, ведь технология BIM-проектирования позволяет существенно сэкономить время и средства, необходимые для реализации проекта. 

Эта технология дает возможность повысить качество проектирования и на раннем этапе представить полную картину того, как будет выглядеть и функционировать объект. При необходимости заказчик может своевременно внести корректировки в проект на той стадии, когда изменения не влекут за собой больших затрат. Это отличная возможность для всех участников проекта получить практически идеальный продукт, обладающий внешней привлекательностью, комфортом и безопасностью среды и, что самое главное, инвестиционной привлекатель­ностью.

Сейчас все проекты нашей компании разрабатываются с применением этой технологии. Например, Центр художественной гимнастики имени Ирины Винер-Усмановой еще в 2016 году получил первое место на конкурсе BIM-технологий, организованном Минстроем РФ.

Другая многообещающая разработка – достаточно молодая в строительной сфере технология математического моделирования (CFD-моделирование). До ее появления то или иное техническое решение можно было обосновать либо опираясь на накопленный опыт (чаще всего используя решения, принятые ранее для подобных объектов), либо при помощи натурных испытаний (создание макета, испытательного стенда и т.п.). Первый вариант – рискованный (аналогичный объект может достаточно сильно отличаться по своим характеристикам от проектируемого, что может дать свою погрешность и привести к неработоспособности решения). Второй – затратный как по деньгам, так и по времени, не говоря о том, что далеко не все макеты можно физически реализовать. Технология CFD дает возможность за пару дней, а иногда и за несколько часов решить нестандартный узел, внести в него требуемые корректировки и добиться эффективности и работоспособности решения.

Мы применяли CFD-моделирование при проектировании таких объектов, как Центр художественной гимнастики в Москве, многофункциональный плавательный центр «Лужники», крытый каток Москомспорта, а также при проектировании жилых зданий.

До того, как мы освоили эту технологию, нам казалось, что ее применение будет востребовано только на уникальных объектах, однако практика показала, что использование CFD-моделей полезно для объектов любого уровня сложности. С его помощью можно решать такие задачи, как распределение температур в сложных трехмерных многослойных конструкциях, расчет параметров микроклимата помещений, воздухораспределение, расчет потерь давления в нестандартных сетевых элементах и т. д.

Данная технология дает специалисту возможность на раннем этапе проектирования отследить вероятные недочеты потенциальных инженерных решений, а иногда и понять, что предлагаемое решение слишком затратно (как энергетически, так и финансово) или вовсе нежизнеспособно. Например, для проверки условий, создаваемых для зрителей и спортсменов, наша компания выполняла оценку проектных решений систем вентиляции и кондиционирования главной арены Центра художественной гимнастики в Москве при помощи CFD-моделирования. Для достижения оптимального результата нам пришлось провести 8 итераций расчетов, в результате чего системы вентиляции и кондиционирования были значительно переработаны. Это еще раз подтверждает: CFD-моделирование и проектирование при помощи BIM-технологий позволяет на раннем этапе выявить проблемы и оптимизировать проектные решения. А заказчик, в свою очередь, получает наглядное, интуитивно понятное обоснование принимаемых решений. Вот несколько примеров выполненных расчетов:

В гармонии со стройкой

Посмотрим, как применение этих технологий реально отражается на строительном процессе. В качестве примера возьмем Центр художественной гимнастики. Для проектируемого объекта выполнялись следующие стадии проекта:

  • концептуальные решения (стадия «К»);
  • стадия «Проектная документация» (стадия «П»);
  • стадия «Рабочая документация» (стадия «Р»);
  • авторский надзор.

Проект стадии «К» стартовал в конце мая 2016 года и длился примерно 2 месяца. Последующая стадия «П» длилась примерно 3,5 месяца. Стадия «Р» длилась примерно 2 года, при этом строительные работы на объекте велись с запаздыванием от проекта всего на 2–3 месяца, иногда этот разрыв становился еще меньше, так что можно сказать, что проект стадии «Р», строительство и авторский надзор шли практически параллельно.

Основные сложности при проектировании как раз и связаны с малым разрывом в сроках между разработкой проектного решения и выдачей его для реализации на стройплощадку. У инженеров и архитекторов остается очень немного времени на принятие и согласование решений, и ошибки при таких малых сроках недопустимы. Именно использование BIM-технологий и, в частности, CFD-мо­делирования позволяет проектировщикам достаточно комфортно чувствовать себя в процессе взаимодействия со всеми заинтересованными сторонами. При этом есть, конечно, одно обязательно условие, с чем нам повезло: в арсенале всех участников проекта были современные технологии и подходы к проектированию, что позволило выполнить поставленную задачу в требуемый срок.


ИСТОЧНИК: СЕ №31(891) от 21.10.2019
ИСТОЧНИК ФОТО: STAR-CCM+

Подписывайтесь на нас: