Лазури для дерева


16.10.2020 16:01

Дерево в качестве строительного и отделочного материала популярно как в профессиональных кругах, так и среди потребителей. Но применение деревянных конструкций сопряжено с необходимостью их грамотной обработки различными защитными составами. Одним из востребованных сейчас на рынке видов покрытий являются лазури.

Сохраняя природную красоту

По словам Андрея Осипова, сегмент менеджера направления HOLZ ООО «Реммерс», при выборе покрытия для дерева необходимо определиться со множеством факторов, влияющих как на конечный результат, так и на срок службы финишного покрытия. «Здесь важна не только порода древесины, но и тип поверхности (брус, бревно, вагонка и т.д.), подверженность деформации (сохранение геометрических параметров), наличие конструкционной защиты (свесы крыши, наличие отмостки и цоколя), расположение дома относительно сторон света, ветровая и атмосферная нагрузки», - подчеркивает эксперт.

«Рынок защиты древесины сложный и многогранный, ведь дерево, по сути, это «подвижный» материал, который продолжает меняться уже в процессе эксплуатации», - рассказывает Екатерина Балон, директор по маркетингу  компании Tikkurila (Россия и Центральная Азия). «Дерево увеличивается в объеме при намокании, уменьшает объем при высыхании, трескается, деформируется при перепадах влажности, которые происходят в течение года - от 40% влажности атмосферного воздуха зимой к 80% в периоды летних и осенних дождей», - соглашается с коллегой Александр Пусенков, региональный менеджер по Красноярску компании ALPACOATINGS. По его словам, любой полимерный состав на поверхности древесины не способен выдержать такие деформации и потому трескается и отслаивается. «У лаковых поверхностей с деревом со временем пропадает адгезия – это тоже приводит к отслоениям. Поэтому важно, чтобы как можно больший объем ЛКМ впитался внутрь древесины, для чего и созданы декоративные лазури», - утверждает он.

Лазури представляют собой один из видов лессирующих составов, состоящих из масел, пигментов и иногда биоцидов и предназначенных для деревянных поверхностей. «Если быть предельно краткими, то лазурь — это прозрачная краска, которая не закрашивает текстуру и структуру древесины, но при этом она обволакивает дерево и защищает на весь срок службы данного покрытия», — рассказывает Анастасия Якорнова, специалист по маслам и краскам компании SAICOS. 

«Лазури или, как их чаще называют, - пропитки для дерева, предназначены для защиты деревянных фасадов и внутренних деревянных стен. Но пропитки относятся к более широкому классу лакокрасочных материалов, куда входят огне- и биосоставы, средства от плесени, отбеливающие составы», - рассказывает Александр Пусенков. По его мнению, при покрытии именно лазурями в основном преследуют две цели – это получение декоративной, иного цвета поверхности древесины и ее защита от потемнения (поражения).

По утверждению Андрея Осипова, лазурь в большинстве случаев является оптимальным выбором, сочетающим в себе множество преимуществ. «Во-первых, это бесплёночный или тонкоплёночный материал, что при правильном нанесении исключает растрескивание и шелушение готового покрытия. Во-вторых, огромная палитра цветов и оттенков, сохраняющих после нанесения рисунок древесины. В-третьих, надёжная защита от атмосферных нагрузок, а в случае с биоцидосодержащими продуктами также профилактическая защита от биопоражений (синева, плесень, гниль, дереворазрушающие насекомые)», - рассказывает он.

По мнению специалистов компании «PROSEPT», данный продукт целесообразно использовать, если необходимо подчеркнуть естественную красоту древесины: ее узор, рельеф и текстуру, ведь с помощью таких средств можно добиться глянцевого, полуматового и матового эффекта на поверхности. «Стоит отметить, что защитные покрытия лессирующих средств обладают высокой паропроницаемостью, благодаря этому древесина сохраняет свои природные свойства», - обращает внимание экперт.

«Главной отличительной особенностью декоративных лазурей является малый сухой остаток на поверхности древесины. Почти весь ЛКМ впитывается в структуру дерева. Это отличает их от лаков и эмалей», - подчеркивает Александр Пусенков.

По словам Екатерины Балон, при выборе лазурей в первую очередь нужно обращать внимание на рекомендации производителя, для каких поверхностей подходит лазурь, какой грунт нужно использовать в системе, а также соблюдать все рекомендации по нанесению лазурей. «Выбор типа лазури зависит также от типа деревянной поверхности (бревенчатые или дощатые). Лазури, не образующие пленку, как правило, менее долговечны, но их можно применять на такие сложные поверхности, как бревенчатые, которые за время службы максимально подвержены растрескиванию. Пленочные составы не способны выдержать такой нагрузки, но на дощатых поверхностях они могу обеспечить большую долговечность и придать блеск», — утверждает эксперт.

Соблюдая технологию

Специалисты компании «PROSEPT» считают, что для лучшего впитывания рекомендуется наносить средство по направлению волокон древесины и обращает внимание, что в зависимости от состава существуют еще требования по соблюдению температурного режима и влажности во время работы. «При работе с лазурью стоит помнить, что ее текстура полупрозрачная и для получения максимально оптимального цвета необходимо будет нанести покрытие в несколько слоев, предварительно дав каждому слою высохнуть», - рассказывают они.

«Лазури в основном используют по новой деревянной поверхности или полностью очищенной от предыдущего лакокрасочного покрытия, т. к. лазури не скрывают дефектов поверхности и цвета ранее нанесенного лакокрасочного покрытия», — соглашается Екатерина Балон. По ее мнению, стоит обратить внимание и на выбранный цвет, в лессирующих составах он не является укрывистым и с каждым новым слоем усиливается в насыщенности.

 

«Декоративные лазури лучше наносить кистью или валиком, т.к.  ЛКМ в древесину нужно «втирать», а при использовании краскопультов такого механического контакта дерево-лазурь не происходит», - утверждает Александр Пусенков. По его словам, в таких случаях часть состава испаряется при нанесении, что приводит к увеличению его расхода и неглубокому впитыванию.

Фасад

Лазури являются прекрасным вариантом для фасадных работ. Входящие в их состав масла выполняют гидрофобную функцию, биоциды препятствуют появлению плесени и насекомых, пигменты защищают от воздействия ультрафиолета.

«В зависимости от области применения в состав лазурей добавляют специальные защитные компоненты, такие как биоциды и фунгициды, воск и УФ-фильтры для более фокусной защиты от влаги и солнца», — рассказывает Екатерина Балон. Вадим Федорченко, менеджер регионального отдела продаж ООО «Альянс «Супернова», официального представителя ТМ Belinka в России, в свою очередь обращает внимание, что при выборе лазурей для внешней окраски главными факторами являются толщина пленки, ее стабильность, хорошая атмосферостойкость, паропроницаемость, эластичность и биологическая стойкость к грибковым поражениям. «По сравнению с эмалями, которые полностью закрывают древесину и являются более стойкими к воздействию ультрафиолета, лазури пропускают не более 1% УФ-излучения», — акцентирует он.

Специалисты компании «PROSEPT» также считают идеальными для фасадов толстослойные лазури. «Как правило, их используют на изделиях, которые не будут подвергаться деформации. После высыхания они образуют прочную заметную пленку на деревянной поверхности», - рассказывают они.

«Мы особенно рекомендуем для фасадов деревянных строений лазури на основе органического растворителя (уайт-спирит), т.е. алкидные», - говорит Александр Пусенков. Он обосновывает свою позицию тем, что растворитель и растворенные в нем компоненты проникают глубже в структуру древесины, чем те же водные составы. Поэтому при применении алкидных лазурей обеспечивается более глубокая и долговечная защита.

«Лазури для фасадов лучше использовать на хорошо подготовленной поверхности древесины, ведь основной задачей является получение в долгосрочной перспективе красивой структуры древесины, обладающей к тому же защитными свойствами», - сообщает Вадим Федорченко. Он подчеркивает, что т.к. эти покрытия - полупрозрачные, то в них должны быть использованы атмосферостойкие пигменты в определенном количестве.

 

Анастасия Якорнова акцентирует, что, помимо удобства нанесения по причине отсутствия подтеков, лазури на масляной основе не менее удобны при обновлении. «Не надо сошлифовывать старое покрытие, достаточно всего лишь очистить фасад от грязи и нанести новый слой», — утверждает она.

Отделка

«Если использовать лазури внутри помещений, то можно рассматривать как тонкослойные, так и толстослойные варианты», — говорит Вадим Федорченко.  Екатерина Балон  отмечает, что лазури с более толстой пленкой, как правило, интенсивнее блестят и являются чуть более долговечными. «Тонкослойная лазурь лучше впитывается в дерево, не дает глянца на поверхности. Но и не трескается и не отслаивается, как толстослойная, которая скорее подходит для интерьеров, где нет суровых условий эксплуатации», - поддерживает коллегу Александр Пусенков. Специалисты компании «PROSEPT» подчеркивают, что тонкослойные или жидкотекущие лазури будут оптимальными для обработки поверхностей сложной формы или при работе с деталями, которые могут подвергаться деформации.

 

«На сегодняшний день наибольшее распространение на рынке получили органоразабавляемые лазури, но Tikkurila задает и поддерживает тренд в сторону водоразбавляемых, поскольку они более экологичны, быстро сохнут и практически не имеют запаха», — рассказывает Екатерина Балон. Вадим Федорченко также придерживается мнения, что при выборе лазурей для внутренних работ определяющим  фактором является экологичная безопасность. «Пожалуй, самыми безопасными являются лазури на водной и масляной основе, которые отлично проникают в древесину, обеспечивают защиту и безопасны для человека», - считают специалисты компании «PROSEPT». Эксперты подчеркивают, что их можно использовать для работы в банях, комнатах, в том числе детских, но при этом стоит помнить о их более низком уровне износостойкости и стараться применять на поверхностях, которые не будут подвергаются частому истиранию.

Растет ли спрос?

На российском рынке этот вид покрытий для древесины очень популярен. «Лазури в конце 90-х фактически пришли на смену ранее использовавшимся традиционным материалам, таким как масляные краски МА-15 и эмали ПФ-115, обеспечив более высокую долговечность и декоративные свойства», — рассказывает Екатерина Балон. По ее словам,  если рассматривать соотношение в использовании лазурей в сегменте коммерческого и частного строительства, то на сегодня, по экспертной оценке, около 60% приходится на частное строительстве. Но такое широкое распространение имеет и свои оборотные стороны.

«В настоящее время лазурные покрытия очень популярны на рынке, но из-за неопытных мастеров, которые всячески нарушают технологические карты при покраске личных строений заказчиков, эта популярность иногда обретает знак минус», — сетует Вадим Федорченко.

В свою очередь Александр Пусенков обращает внимание на частые случаи сдачи объектов без покрытия лазурями, для самостоятельного нанесения заказчиками по своему усмотрению. «В связи с ярко выраженным сезонным спросом на лазури, доля в их в нашем портфеле заказов невысока», - рассказывает он, подчеркивая также, что спрос еще снижается ввиду уменьшения объемов строительства частного сектора, особенно в регионах.

Иного мнения придерживаются в компании «PROSEPT».  «Доля лазурей в портфеле заказов нашей компании составляет порядка 7% и с учетом тренда на поддержание естественной красоты, есть вероятность, что процент постепенно будет увеличиваться», - надеются они. Екатерина Балон утверждает, что спрос на лазури на рынке ежегодно растет на 5–10%, и данный тренд в ближайшие годы не изменится.

Новые тренды

Запросы рынка на покрытия для дерева экперты оценивают по-разному. «Рынок ЛКМ все больше скатывается к эконом-сегменту. Заказчик голосует рублем, как говорят», - считает Александр Пусенков. По его мнению, если на рынке и будут появляться новинки, то именно в этом недорогом сегменте. «Наша компания рассматривала возможность выпуска лазурей на водной основе как более недорогого продукта. Но вопрос был отложен. Все будет зависеть от активности на рынке строительных и отделочных материалов», - рассказывает он.

В компании Реммерс на текущую ситуацию смотрят более оптимистично. «Одной из новинок представленной компанией в 2020 году стало масло-лазурь AQUA OVL-49 [eco] для профессионального применения на основе натурального масла и восков для деревянных фасадов и интерьеров», - рассказывает Андрей Осипов. По его словам, продукт на 90% состоит из натуральных компонентов, из-за чего заслужено относится к линейке Remmers [eco] и имеет множество европейских сертификатов экологичности и безопасности для здоровья человека и окружающей среды. «Безусловно, продукт с маркировкой эко не может содержать биоцидных добавок,- отмечает Андрей Осипов, - но благодаря присутствию в составе AQUA OVL-49 [eco] масла и восков, готовое покрытие прекрасно защищает древесину в том числе и от биопоражений, так как имеет выраженное гидрофобизирующее действие, но при этом сохраняет превосходную паропроницаемость. Поры древесины не закупориваются, а обволакиваются маслом, что позволяет дереву «дышать».

Екатерина Баллон отмечает, что в последнее время набирает популярность использование террасных масел для обработки террас, беседок и деревянной мебели на улице. «В ассортименте Tikkurila представлен достойный выбор масел, который в ближайшее время пополнится уникальной новинкой, способной обеспечить наиболее долговечное покрытие, при этом являясь максимально экологичным и безопасным решением», - рассказывает она. 


АВТОР: Екатерина Сосновская
ИСТОЧНИК ФОТО: https://kraskilife.ru


ZinCo: создай жизнь на крыше


14.07.2020 11:32

Немецкая компания ZinCo является мировым лидером кровельного озеленения. За более чем полувековой период деятельности она разработала ряд уникальных технологий, позволяющих создавать на крыше зданий естественную зеленую среду с различными видами озеленения, от самых простых до самых настоящих садов на крыше. В настоящее время филиалы компании работают в 45 странах мира. Официальным представителем ZinCo в России и странах СНГ является компания «ЦинКо РУС», которая за годы своей работы уже реализовала множество интересных проектов.


Стоит отметить, что зеленые кровли, в том числе благодаря ZinCo, стали обычным явлением во многих странах уже несколько десятков лет назад. В России у кровельного озеленения история скромнее, но сейчас данный сегмент становится все более востребованным.

Руководитель Санкт-Петербургского офиса OOO "ЦинКо РУС" Сергей Яшенков вспоминает, что идея создать проект природной кровли, к которым также относятся «зеленые крыши», возникла еще в 2001 году. Оказалось, что это довольно сложный продукт, потребовавший глубокого предварительного ознакомления. «Начиная с 2003 года, мы стали изучать мировую практику по производству зеленых кровель. В России тогда этой темой практически никто не занимался, лишь изредка возникали подобные проекты у частных архитекторов и проектировщиков. Но в промышленных масштабах этого не было. Наибольший интерес у нас вызвала продукция лидера кровельного озеленения – компании ZinCo в Германии. В течение пяти лет мы изучали этот вопрос научными и практическими методами, исследовали возможность применения зеленых кровель в российском климате. В 2007 году, после того как наш опыт был признан успешным, в России открылся филиал немецкого концерна ZinCo, сотрудником которого я и являюсь»,- добавил Сергей Яшенков.
В настоящее время в активе «ЦинКо РУС» более 500 реализованных проектов. Среди них: озелененные кровли здания Союза Московских Архитекторов, архитектурного объекта «Городская Площадь» в Москва-Сити, павильона станции столичного метро «ЦСКА»; в Санкт-Петербурге эксплуатируемая кровля была создана на новом корпусе клиники ВМА МО и т.д. «ЦинКо РУС» очень плотно работает и с жилыми объектами. Многие ЖК в Москве, Санкт-Петербурге и других городах были возведены с озелененными крышами и стилобатами. Применяются системы ZinCo и в проектах индивидуального малоэтажного строительства.

«ЦинКо РУС» предлагает различные виды озеленения кровли. Компания работает как с плоскими, так и со скатными кровлями, в том числе, решая сложные задачи эксплуатации кровли (пешеходные зоны, проезжие части для тяжелого транспорта, спортивные и детские площадки и т.д.).

Качество на долгие годы

В чем же привлекательность озелененной кровли от ZinCo? Как отмечают в компании «ЦинКо РУС», в уникальности самих технологий и продуктов немецкого концерна. Используются они на практике достаточно давно, но постоянно дорабатываются и адаптируются, в том числе, под определенные географические особенности и отвечают всем современным требованиям. В частности, гарантия на решения ZinCo до 35 лет.

Кроме того, «ЦинКо РУС» контролирует весь комплекс строительно-монтажных работ по устройству крыш. Таким образом, обеспечивается качество исполнения проектного решения. За счет высокого качества технических решений и использования оригинальных материалов ZinCo, высокого профессионализма сотрудников «ЦинКо РУС» заказчик зеленой крыши может на длительные годы существенно сократить расходы на ее эксплуатацию.

По словам Сергея Яшенкова, в работе используются только оригинальные материалы ZinCo. Поставляются они из Германии. Также с 2015 года по программе импортозамещения некоторые материалы ZinCo начали производиться и в России. В целом, практически все продукты ZinCo обладают уникальными техническими характеристиками. «Приведу пример, у нас есть высокопрочная профилированная мембрана для эксплуатируемых кровель - Стабилодрейн SD30. Этот материал позволяет сократить сроки производства работ на две недели и организовать производство работ на кровле без отливки распределительной железобетонной плиты»,- добавляет он.

Знание-сила

Специалисты «ЦинКо РУС» не только занимаются озеленением кровель на множестве отечественных объектов, но и проводят большую просветительскую работу. Компания регулярно проводит семинары, на которых рассказывает о современных технологиях, материалах и трендах в сегменте озеленения и строительства эксплуатируемых крыш. Также представители «ЦинКо РУС» принимают участие в симпозиумах, международных и региональных конференциях. Таким образом, компания стоит в авангарде развития и популяризации зеленых технологий в строительстве в России.
Стоит добавить, что «ЦинКо РУС» является одним из разработчиков национального стандарта по озеленению крыш (ГОСТ Р 58875-2020). С 1 июня 2020 года он вступил в силу и должен способствовать реализации новых качественных проектов в данной сфере.

«Перед собой мы ставим множество планов и задач. Конечно же, их реализация будет во многом зависеть от того, как будет двигаться стройка в России. Хочу отметить, что я и мои коллеги, готовы делиться своим опытом и наработками, принимая участие в проектах с эксплуатируемыми кровлями различного назначения»,- подчеркнул Сергей Яшенков.

 

МАТЕРИАЛЫ ПО ТЕМЕ:

Здесь будет сад. Зеленые кровли становятся архитектурным трендом

«Зеленые стандарты» необязательного характера следовать или нет ?

 


ИСТОЧНИК ФОТО: Пресс-служба OOO "ЦинКо РУС"


Опыт одновременного строительства подземной и надземной частей здания методом up-doun


14.07.2020 09:54

В условиях плотной городской застройки, а также дефицита свободных участков подземное строительство приобретает особую актуальность, однако местная специфика и гидрогеологические условия делают задачу возведения подземных объектов очень непростой. Это стимулирует инженеров использовать новые методы, которые обеспечивают безопасную эксплуатацию окружающей застройки, позволяют проводить подземные работы практически на любой глубине даже в самых сложных инженерных и геологических условиях. Одним из таких является метод up-down, или «вверх-вниз». Такой способ позволяет на нулевой отметке выполнить перекрытие и продолжить строительство одновременно как вверх, так и вниз. Данная технология является актуальной в современных условиях строительства, так как позволяет возводить здания с меньшим задействованием близлежащих территорий. В статье описан принцип технологии up-down, представлен порядок производства работ, рассмотрены основные преимущества и недостатки данного метода, приведены результаты геотехнического мониторинга окружающей застройки.


Основной областью применения метода up-down является устройство глубоких котлованов в пределах плотной городской застройки. Обычно этот метод используется при невозможности выполнения грунтовых анкеров вследствие стесненных условий и существующей развитой подземной части на соседних участках [1–7]. Кроме того, этот метод используется при малых допустимых деформациях окружающих зданий и сооружений. Явным преимуществом метода up-down является высокий темп строительства при устройстве высотной части (рис. 1).

схема

Рис. 1. Схема производства работ по методу up-down

При многих преимуществах этого метода строительства он в большинстве случаев ведет к удорожанию строительного производства по сравнению со строительством в открытом котловане. Особую сложность представляет собой организация снабжения и логистики при подобном виде работ [8]. Следует отметить, что устройство подземной части по методу «вверх-вниз» требует высокой квалификации подрядчика и детальной проектной проработки [9].

Для производства работ по устройству подземной части при данном методе строительства используется технологии «стена в грунте» и струйная цементация грунта (Jet-grouting). Проектирование конфигурации стены выполняется с учетом особенностей технологического оборудования (гидрофрезы). В ходе подготовительных работ по контуру будущей ограждающей конструкции выполняется форшахта шириной 60…80 см и глубиной до 3,0 м. Стенки форшахты раскрепляются железобетонными монолитными конструкциями.

Разработка грунта в траншее и бетонирование выполняются под защитой глиняного тиксотропного раствора, приготовляемого из бентонитовой глины, что обеспечивает устойчивость стенок траншеи от обрушения. Параметры раствора корректируются при производстве работ на опытном участке.

Укладка бетонной смеси панелей ограждающей конструкции производится методом вертикального подъема трубы. Бетонирование стен под защитой глиняного раствора должно выполняться не позднее чем через 8 часов после образования траншеи в захватке. Бетонирование одной захватки проводится непрерывно на всю высоту. Между захватками выполняется холодный рабочий шов, а армирование захватки — сборными пространственными арматурными каркасами. Глубина ограждающей конструкции по данной технологии может достигать 25…30 м.

По грунтовым условиям «стена в грунте» может применяться в любых дисперсных грунтах.

При устройстве больших котлованов, внутри которых возводится здание или сооружение, ограждающие конструкции, выполненные методом «стена в грунте», используют как внешние стены подземной части. В этом случае нагрузка от здания передается на фундаменты, не связанные с ограждающими стенами.

При необходимости ограждающие конструкции, устраиваемые методом «стена в грунте», могут выполнять двойную функцию: являются и ограждением котлована, и конструктивным элементом.

Современные технологии позволяют устраивать конструкции подземных сооружений разных форм, но традиционные и наиболее часто встречающиеся — конструкции из прямолинейных стенок.

При наличии грунтов, содержащих твердые включения природного или техногенного происхождения (крупные валуны, обломки бетонных конструкций, каменной кладки и др.), при проходке траншеи используется техника, оснащенная фрезерным оборудованием, например, фирм «Бауэр», «Касагранде».

Использование грейферного оборудования, которым крупные включения извлекаются, может привести к деформированию стенки траншеи, падению уровня тиксотропного раствора и деформациям окружающего массива и близ расположенных зданий.

Для надежного уплотнения проблемных стыков между панелями траншейных стен, как показал опыт строительства, успешно может быть применена технология струйной цементации jet-grouting. Она заключается в разрушении и перемешивании грунта мощнонапорной струей цементного раствора, исходящего под высоким давлением из монитора, расположенного на нижнем конце буровой колонны. В результате в грунтовом массиве формируются сваи диаметром 0,6–1,5 м из нового материала — грунтобетона с достаточно высокими несущими и противофильтрационными характеристиками. При этом цементационные работы могут выполняться как снаружи ограждающих котлован стен, так и изнутри котлована до его разработки. С этой целью в зависимости от прогнозируемой величины раскрытия стыков с глубиной могут быть применены неармируемые или армируемые металлическими трубами грунтоцементные колонны диаметром 60 или 80 см.

Для разработки грунтового ядра внутри подземного сооружения, возводимого способом «стена в грунте», рекомендуется применять технологию, которая предусматривает разработку вначале центральной части грунтового массива на глубину одного яруса с сохранением по периферии нетронутых участков. Такой прием облегчает работу ограждающей конструкции. Затем монтируются распорные конструкции, и разрабатывается оставшаяся часть грунта. Одним из существенных преимуществ данных технологий является возможность устройства как отдельных, так и протяженных подземных конструкций с поверхности земли без экскавации котлована [10].

Производство работ по методу up-down считается одним из самых сложных видов строительного производства с геотехнической точки зрения и предусматривает комплексную программу мониторинга в период строительства здания [11].

  1. Характеристика объекта строительства

Рассматриваемая площадка строительства обладает практически всеми перечисленными осложняющими факторами:

Инженерно-геологические и гидрогеологические условия.

В геологическом строении площадки принимают участие следующие элементы (рис. 2): ИГЭ-1. Современные техногенные отложения, песчано-суглинистые грунты со щебнем кирпича. ИГЭ-2. Глина мягкопластичной консистенции. ИГЭ-3. Суглинки мягкопластичной и тугопластичной консистенции. ИГЭ-4. Супеси пластичные. ИГЭ-5. Пески пылеватые, средней плотности, водонасыщенные. ИГЭ-6. Пески мелкие, средней плотности, водонасыщенные. ИГЭ-7. Пески средней крупности, средней плотности, водонасыщенные. ИГЭ-8.1. Глина полутвердая. ИГЭ-8. Мергель малопрочный. ИГЭ-9.1. Известняк, разрушенный до щебня и дресвы. ИГЭ-9. Известняк малопрочный. ИГЭ-10. Глина полутвердая.

Подземная вода встречена на глубине 3,7…4,0 м от поверхности.

В представленных инженерно-геологических условиях, при наличии в основании значительной толщи слабых грунтов и высоком уровне грунтовых вод, основным требованием к ограждающей конструкции котлована является обеспечение минимального поступления воды в котлован и ограничение дополнительных вертикальных перемещений окружающей застройки. Для определения зданий и сооружений, на которые возможно влияние от строительства проектируемого, предварительно назначается 30-метровая зона, которая впоследствии уточняется расчетами. Выполняется обследование зданий, определяется история их строительства, техническое состояние основных конструктивных элементов. Величина допустимого влияния определяется исходя из условия обеспечения надежности здания и зависит от его технического состояния и конструктивной схемы.

 схема площадки

Рис. 2. Инженерно-геологический разрез площадки строительства

Градостроительная и геотехническая ситуация.

Строящееся здание возводится в существующем квартале исторической застройки на месте демонтированного здания. При этом по градостроительным условиям было необходимо сохранить исторический фасад здания, выходящий на улицу. В зону влияния строительства попадают 15 зданий, техническое состояние зданий по результатам обследования оценено как удовлетворительное, предельные дополнительные осадки этих зданий ограничены диапазоном 10…30 мм. Для обеспечения сохранности и механической безопасности зданий при производстве работ по строительству здания и в ходе его эксплуатации необходимо было выполнить комплекс работ по улучшению механических свойств грунтовых оснований (метод компенсационного нагнетания цементного раствора) и усилению конструкции фундаментов. На всех этапах производства работ был организован мониторинг за развитием вертикальных перемещений и техническим состоянием основных конструкций зданий. Схема расположения наблюдательных марок приведена на рис. 3.

Схема размещения наблюдательных марок (вертикальные перемещения)

 Рис. 3. Схема размещения наблюдательных марок (вертикальные перемещения)

Характеристика строящегося здания.

Здание монолитное, железобетонное, с максимальной отметкой верха 34,10 м, прямоугольной формы в плане, состоящее из 6-этажной надземной части и 3-этажной подземной части (гаража). Несущие конструкции — продольные и поперечные монолитные железобетонные стены и колонны. Максимальная глубина котлована 12,60 м. Способ разработки котлована up-down: заглубление под защитой дисков плит перекрытий с возможностью одновременного строительства вверх. Конструкция ограждения котлована: траншейная стена толщиной 640 мм, выполняемая гидрофрезерным оборудованием (базовая машина BAUER BG-28 с гидрофрезой BC-32). Фундамент — свайное поле со сваями-бареттами, опирающимися на однородный скальный грунт (известняки). Вся эксплуатационная нагрузка передается на сваи, железобетонная плита подстилающего слоя толщиной 250 мм не связывается со сваями.

2. Последовательность выполнения работ

Производство работ по устройству подземной части здания выполнялось в следующей последовательности:

Этап 1. Выполнение компенсационного нагнетания цементного раствора в грунтовое основание фундаментов зданий окружающей застройки. Усиление конструкции фундаментов зданий окружающей застройки. Устройство буроинъекционых свай в основании фундаментов сохраняемой части фасада (рис. 4).

Рис. 4. Схема выполнения работ по усилению грунтового основания фундаментов существующих зданий

Рис. 4. Схема выполнения работ по усилению грунтового основания фундаментов существующих зданий

Усиленный таким образом грунтовый массив является новым техногенным образованием, обладающим высокой степенью жесткости. Методика уплотнения позволяет уплотнять не только дисперсные связанные грунты (глины, суглинки, супеси), но и несвязанные дисперсные грунты (пески, насыпные техногенные грунты). Расширение возможностей применения технологии на широком спектре грунтов происходит за счет подбора качественной характеристики раствора, обеспечивающей ее высокую проникающую способность. Наличие грунтовых вод не является противопоказанием к применению высоконапорной инъекции.

Этап 2 (рис. 5). Выполнение форшахт для устройства ограждения по периметру подземной части здания и для выполнения свай-баретт. Производство работ по устройству монолитной железобетонной плиты рабочего уровня с направляющими гильзами для устройства скважин цементации. Бурение скважин и цементация скального грунта. После цементации вдоль периметра ограждения котлована образуется слой скального грунта с достаточными противофильтрационными свойствами для разработки вертикальных траншей

Рис. 5. Этапы устройства форшахт ограждения по периметру и баретт, цементации основания и бетонирования плиты рабочего уровня

Рис. 5. Этапы устройства форшахт ограждения по периметру и баретт, цементации основания и бетонирования плиты рабочего уровня

Рис. 6. Этапы устройства ограждающей конструкции, свай-баретт и экскавации котлована

под защитой бентонитового раствора. Водопроницаемость зацементированных грунтов контролируется по величине удельного водопоглощения, установленного при гидравлическом опробовании контрольных скважин. В основании баретт формируется непрерывный пласт сплошного зацементированного скального массива с нормативным пределом прочности на одноосное сжатие — R_с≥11,0 МПа. Для контроля прочности выполняется отбор образцов и их лабораторные испытания.

Этап 3 (рис. 6). Устройство траншейной стены ограждения подземной части методом «стена в грунте» гидрофрезерным оборудованием (единичная заходка — 2800 х 640 мм) в две очереди по захваткам с заведением в водоупор (ИГЭ-10) не менее чем на один метр. Устройство замыкающих грунтобетонных элементов, выполняемых по технологии струйной цементации грунта (Jet-1), между криволинейными захватками с заведением до отметки кровли скального грунта (ИГЭ-8).

Этап 4. Устройство баретт (2800 х 640 мм) с «сердечниками» под временные и постоянные железобетонные и стальные колонны и баретт под башенный кран по технологии «стена в грунте».

Этап 5. Демонтаж форшахт и железобетонной плиты рабочего уровня. Устройство фундамента башенного крана. Срубка шламового бетона верхней части ограждения котлована на высоту 500 мм. Устройство обвязочной балки и периферийной части плиты перекрытия на отметке (-0.100) по инвентарной опалубке.

Этап 6. Поэтапная экскавация котлована до отметки -4,550 м. Демонтаж временных колонн.

Этап 7. Устройство монолитной железобетонной плиты перекрытия на отметке (-4.550) по бетонной подготовке. Устройство вертикальных несущих конструкций минус первого этажа.

Этап 8. Устройство центральной части плиты перекрытия с технологическими проемами на отметке (-0.100). Эта конструкция позволяет вести работы по устройству надземной части здания, поскольку опирается на ранее выполненные сваи баретты и не требует устройства фундаментной плиты на минус третьем уровне. Начало строительства надземной части здания без ограничения скорости производства работ и этажности.

Этап 9. Разработка грунта котлована малогабаритной техникой до отметки -8.500. Устройство монолитной железобетонной плиты перекрытия минус второго этажа на отметке -8.200.

Этап 10. Разработка грунта котлована малогабаритной техникой до отметки -12,600 м. Срубка и оформление оголовков баретт. Устройство дренажной системы по дну котлована. Устройство монолитной железобетонной плиты пола минус третьего этажа.

Этап 11. Устройство вертикальных несущих конструкций минус третьего этажа.

Этап 12. Завершение работ по устройству монолитной железобетонной плиты минус второго этажа. Устройство пандусов и лестничных маршей. Устройство внутренней вертикальной гидроизоляции и прижимной монолитной железобетонной стенки на минус третьем этаже. Для устройства монолитной прижимной стенки в перекрытиях были предусмотрены технологические гильзы-направляющие.

Этап 13. Устройство вертикальных несущих конструкций минус второго этажа. Устройство внутренней вертикальной гидроизоляции и прижимной монолитной железобетонной стенки на минус втором этаже.

Этап 14. Ликвидация временного технологического проема в железобетонной плите на отметке -0.100. Демонтаж временных колонн.

Этап 15. Демонтаж башенного крана. Демонтаж ростверка и баретт башенного крана. Устройство внутренней вертикальной гидроизоляции и прижимной монолитной железобетонной стенки на минус первом этаже. Устройство наружной вертикальной гидроизоляции стилобатной части здания и благоустройство территории.

3. Геотехнический мониторинг

В ходе геотехнического мониторинга выполнялись высокоточные геодезические измерения отметок установленных деформационных марок, оценивалась динамика развития вертикальных перемещений зданий и проводилась визуальная оценка их технического состояния. Динамика развития наиболее интенсивных вертикальных перемещений показана на рис. 7. Вертикальные перемещения остальных марок имеют меньшие значения. Относительная разница дополнительных осадок фундаментов существующих зданий также не превысила предельно допустимого уровня.

 Рис. 7. Динамика развития вертикальных перемещений деформационных марок

Рис. 7. Динамика развития вертикальных перемещений деформационных марок

О стабилизации осадок зданий окружающей застройки можно судить по изменению скорости их развития, а она имеет явную тенденцию к снижению. Это можно хорошо проследить на графике построенных по данным наблюдений. Если в начальный период наблюдения она составляла 0,1…0,15 мм/сут, то через 90 суток она составила 0,03…0,45 мм/сут, следовательно, снизилась в 2,5 …3,0 раза. Такое снижение скорости развития абсолютной величины вертикальных перемещений свидетельствует о процессе их стабилизации.

Заключение

Выбор метода производства работ up-down по устройству здания в стесненных городских условиях оказался полностью оправданным. Использованные при реализации этого метода технологии позволили выполнить работы в установленные сроки, с качеством обеспечивающим механическую безопасность как строящегося объекта, так и окружающей застройки. Производство работ хотя и является технически сложным, но при надлежащем уровне мониторинга позволяет оптимизировать сроки проведения работ. Полученный в ходе строительства опыт может быть в дальнейшем использован при проектировании и строительстве объектов такого уровня сложности.

Литература

1. Абелев М. Ю. Особенности технологии проведения работ по устройству фундаментов: Учеб. пособие / М. Ю. Абелев, Б. М. Красновский. М.: Б. и., 1980. — 45 с.

2. Абелев М. Ю. Деформации сооружений в сложных инженерно-геологических условиях. М.: ЦМИПКС при МИСИ им. В. В. Куйбышева, 1982. — 290 c.

3. Строительство зданий и сооружений в сложных грунтовых условиях / [М. Ю. Абелев, В. А. Ильичев, С. Б. Ухов и др.]; под ред. М. Ю. Абелева. М.: Стройиздат, 1986. — 104 с.

4. Абелев М. Ю., Чунюк Д. Ю, Бровко Е. И. Выправление кренов высотных промышленных и гражданских зданий // Промышленное и гражданское строительство. 2016. — № 11. — С. 54–59.

5. Катценбах Р., Шмитт А., Рамм Х. Основные принципы проектирования и мониторинга высотных зданий Франкфурта-на-Майне. Случаи из практики // Реконструкция городов и геотехническое строительство. 2005. № 9. C. 80–99.

6. Конюхов Д. С. Строительство городских подземных сооружений мелкого заложения. М.: Архитектура, 2005. — 298 с.

7. Chang-Yu Ou. Deep Excavations. Theory and Practice. London: Taylor & Francis, 2006. — 532 p.

8. Щерба В. Г., Абелев К. М., Храмов Д. В., Сагалаков Г. В., Бахронов Р. Р. Особенности обеспечения объектов строительства монолитных многоэтажных зданий в стесненных городских условиях. //Вестник МГСУ. — 2008. — № 3. С. 146–149.

9. Юркевич П. Б. Возведение монолитных железобетонных перекрытий при полузакрытом способе строительства подземных сооружений //Подземное пространство мира. — 2002. — № 1. — С. 13–22.

10. Makovetskiy O., Zuev S. Practice device artificial improvement basis of soil technologies jet grouting. Procedia Engineering. — 2016. — Vol. 165: 15th Intern. sci. conf. Underground Urbanisation as a Prerequisite for Sustainable Development 12–15 Sept. 2016, St. Petersburg, Russia. — P. 504–509.

11. Маковецкий О. А. Зуев С. С. Опыт проведения испытаний баретты большой длины в условиях плотной городской застройки // Жилищное строительство. 2018. — № 9 —С. 13–18.

Авторы статьи: 

М. Ю. АБЕЛЕВ, С. С. ЗУЕВ , Р. Р. АХМЕТШИН

Центр инновационных технологий в строительстве Института ДПО ГАСИС НИУ ВЩЭ
АО «Нью Граунд»