Опыт одновременного строительства подземной и надземной частей здания методом up-doun

В условиях плотной городской застройки, а также дефицита свободных участков подземное строительство приобретает особую актуальность, однако местная специфика и гидрогеологические условия делают задачу возведения подземных объектов очень непростой. Это стимулирует инженеров использовать новые методы, которые обеспечивают безопасную эксплуатацию окружающей застройки, позволяют проводить подземные работы практически на любой глубине даже в самых сложных инженерных и геологических условиях. Одним из таких является метод up-down, или «вверх-вниз». Такой способ позволяет на нулевой отметке выполнить перекрытие и продолжить строительство одновременно как вверх, так и вниз. Данная технология является актуальной в современных условиях строительства, так как позволяет возводить здания с меньшим задействованием близлежащих территорий. В статье описан принцип технологии up-down, представлен порядок производства работ, рассмотрены основные преимущества и недостатки данного метода, приведены результаты геотехнического мониторинга окружающей застройки.
Основной областью применения метода up-down является устройство глубоких котлованов в пределах плотной городской застройки. Обычно этот метод используется при невозможности выполнения грунтовых анкеров вследствие стесненных условий и существующей развитой подземной части на соседних участках [1–7]. Кроме того, этот метод используется при малых допустимых деформациях окружающих зданий и сооружений. Явным преимуществом метода up-down является высокий темп строительства при устройстве высотной части (рис. 1).
Рис. 1. Схема производства работ по методу up-down
При многих преимуществах этого метода строительства он в большинстве случаев ведет к удорожанию строительного производства по сравнению со строительством в открытом котловане. Особую сложность представляет собой организация снабжения и логистики при подобном виде работ [8]. Следует отметить, что устройство подземной части по методу «вверх-вниз» требует высокой квалификации подрядчика и детальной проектной проработки [9].
Для производства работ по устройству подземной части при данном методе строительства используется технологии «стена в грунте» и струйная цементация грунта (Jet-grouting). Проектирование конфигурации стены выполняется с учетом особенностей технологического оборудования (гидрофрезы). В ходе подготовительных работ по контуру будущей ограждающей конструкции выполняется форшахта шириной 60…80 см и глубиной до 3,0 м. Стенки форшахты раскрепляются железобетонными монолитными конструкциями.
Разработка грунта в траншее и бетонирование выполняются под защитой глиняного тиксотропного раствора, приготовляемого из бентонитовой глины, что обеспечивает устойчивость стенок траншеи от обрушения. Параметры раствора корректируются при производстве работ на опытном участке.
Укладка бетонной смеси панелей ограждающей конструкции производится методом вертикального подъема трубы. Бетонирование стен под защитой глиняного раствора должно выполняться не позднее чем через 8 часов после образования траншеи в захватке. Бетонирование одной захватки проводится непрерывно на всю высоту. Между захватками выполняется холодный рабочий шов, а армирование захватки — сборными пространственными арматурными каркасами. Глубина ограждающей конструкции по данной технологии может достигать 25…30 м.
По грунтовым условиям «стена в грунте» может применяться в любых дисперсных грунтах.
При устройстве больших котлованов, внутри которых возводится здание или сооружение, ограждающие конструкции, выполненные методом «стена в грунте», используют как внешние стены подземной части. В этом случае нагрузка от здания передается на фундаменты, не связанные с ограждающими стенами.
При необходимости ограждающие конструкции, устраиваемые методом «стена в грунте», могут выполнять двойную функцию: являются и ограждением котлована, и конструктивным элементом.
Современные технологии позволяют устраивать конструкции подземных сооружений разных форм, но традиционные и наиболее часто встречающиеся — конструкции из прямолинейных стенок.
При наличии грунтов, содержащих твердые включения природного или техногенного происхождения (крупные валуны, обломки бетонных конструкций, каменной кладки и др.), при проходке траншеи используется техника, оснащенная фрезерным оборудованием, например, фирм «Бауэр», «Касагранде».
Использование грейферного оборудования, которым крупные включения извлекаются, может привести к деформированию стенки траншеи, падению уровня тиксотропного раствора и деформациям окружающего массива и близ расположенных зданий.
Для надежного уплотнения проблемных стыков между панелями траншейных стен, как показал опыт строительства, успешно может быть применена технология струйной цементации jet-grouting. Она заключается в разрушении и перемешивании грунта мощнонапорной струей цементного раствора, исходящего под высоким давлением из монитора, расположенного на нижнем конце буровой колонны. В результате в грунтовом массиве формируются сваи диаметром 0,6–1,5 м из нового материала — грунтобетона с достаточно высокими несущими и противофильтрационными характеристиками. При этом цементационные работы могут выполняться как снаружи ограждающих котлован стен, так и изнутри котлована до его разработки. С этой целью в зависимости от прогнозируемой величины раскрытия стыков с глубиной могут быть применены неармируемые или армируемые металлическими трубами грунтоцементные колонны диаметром 60 или 80 см.
Для разработки грунтового ядра внутри подземного сооружения, возводимого способом «стена в грунте», рекомендуется применять технологию, которая предусматривает разработку вначале центральной части грунтового массива на глубину одного яруса с сохранением по периферии нетронутых участков. Такой прием облегчает работу ограждающей конструкции. Затем монтируются распорные конструкции, и разрабатывается оставшаяся часть грунта. Одним из существенных преимуществ данных технологий является возможность устройства как отдельных, так и протяженных подземных конструкций с поверхности земли без экскавации котлована [10].
Производство работ по методу up-down считается одним из самых сложных видов строительного производства с геотехнической точки зрения и предусматривает комплексную программу мониторинга в период строительства здания [11].
- Характеристика объекта строительства
Рассматриваемая площадка строительства обладает практически всеми перечисленными осложняющими факторами:
Инженерно-геологические и гидрогеологические условия.
В геологическом строении площадки принимают участие следующие элементы (рис. 2): ИГЭ-1. Современные техногенные отложения, песчано-суглинистые грунты со щебнем кирпича. ИГЭ-2. Глина мягкопластичной консистенции. ИГЭ-3. Суглинки мягкопластичной и тугопластичной консистенции. ИГЭ-4. Супеси пластичные. ИГЭ-5. Пески пылеватые, средней плотности, водонасыщенные. ИГЭ-6. Пески мелкие, средней плотности, водонасыщенные. ИГЭ-7. Пески средней крупности, средней плотности, водонасыщенные. ИГЭ-8.1. Глина полутвердая. ИГЭ-8. Мергель малопрочный. ИГЭ-9.1. Известняк, разрушенный до щебня и дресвы. ИГЭ-9. Известняк малопрочный. ИГЭ-10. Глина полутвердая.
Подземная вода встречена на глубине 3,7…4,0 м от поверхности.
В представленных инженерно-геологических условиях, при наличии в основании значительной толщи слабых грунтов и высоком уровне грунтовых вод, основным требованием к ограждающей конструкции котлована является обеспечение минимального поступления воды в котлован и ограничение дополнительных вертикальных перемещений окружающей застройки. Для определения зданий и сооружений, на которые возможно влияние от строительства проектируемого, предварительно назначается 30-метровая зона, которая впоследствии уточняется расчетами. Выполняется обследование зданий, определяется история их строительства, техническое состояние основных конструктивных элементов. Величина допустимого влияния определяется исходя из условия обеспечения надежности здания и зависит от его технического состояния и конструктивной схемы.
Рис. 2. Инженерно-геологический разрез площадки строительства
Градостроительная и геотехническая ситуация.
Строящееся здание возводится в существующем квартале исторической застройки на месте демонтированного здания. При этом по градостроительным условиям было необходимо сохранить исторический фасад здания, выходящий на улицу. В зону влияния строительства попадают 15 зданий, техническое состояние зданий по результатам обследования оценено как удовлетворительное, предельные дополнительные осадки этих зданий ограничены диапазоном 10…30 мм. Для обеспечения сохранности и механической безопасности зданий при производстве работ по строительству здания и в ходе его эксплуатации необходимо было выполнить комплекс работ по улучшению механических свойств грунтовых оснований (метод компенсационного нагнетания цементного раствора) и усилению конструкции фундаментов. На всех этапах производства работ был организован мониторинг за развитием вертикальных перемещений и техническим состоянием основных конструкций зданий. Схема расположения наблюдательных марок приведена на рис. 3.
Рис. 3. Схема размещения наблюдательных марок (вертикальные перемещения)
Характеристика строящегося здания.
Здание монолитное, железобетонное, с максимальной отметкой верха 34,10 м, прямоугольной формы в плане, состоящее из 6-этажной надземной части и 3-этажной подземной части (гаража). Несущие конструкции — продольные и поперечные монолитные железобетонные стены и колонны. Максимальная глубина котлована 12,60 м. Способ разработки котлована up-down: заглубление под защитой дисков плит перекрытий с возможностью одновременного строительства вверх. Конструкция ограждения котлована: траншейная стена толщиной 640 мм, выполняемая гидрофрезерным оборудованием (базовая машина BAUER BG-28 с гидрофрезой BC-32). Фундамент — свайное поле со сваями-бареттами, опирающимися на однородный скальный грунт (известняки). Вся эксплуатационная нагрузка передается на сваи, железобетонная плита подстилающего слоя толщиной 250 мм не связывается со сваями.
2. Последовательность выполнения работ
Производство работ по устройству подземной части здания выполнялось в следующей последовательности:
Этап 1. Выполнение компенсационного нагнетания цементного раствора в грунтовое основание фундаментов зданий окружающей застройки. Усиление конструкции фундаментов зданий окружающей застройки. Устройство буроинъекционых свай в основании фундаментов сохраняемой части фасада (рис. 4).
Рис. 4. Схема выполнения работ по усилению грунтового основания фундаментов существующих зданий
Усиленный таким образом грунтовый массив является новым техногенным образованием, обладающим высокой степенью жесткости. Методика уплотнения позволяет уплотнять не только дисперсные связанные грунты (глины, суглинки, супеси), но и несвязанные дисперсные грунты (пески, насыпные техногенные грунты). Расширение возможностей применения технологии на широком спектре грунтов происходит за счет подбора качественной характеристики раствора, обеспечивающей ее высокую проникающую способность. Наличие грунтовых вод не является противопоказанием к применению высоконапорной инъекции.
Этап 2 (рис. 5). Выполнение форшахт для устройства ограждения по периметру подземной части здания и для выполнения свай-баретт. Производство работ по устройству монолитной железобетонной плиты рабочего уровня с направляющими гильзами для устройства скважин цементации. Бурение скважин и цементация скального грунта. После цементации вдоль периметра ограждения котлована образуется слой скального грунта с достаточными противофильтрационными свойствами для разработки вертикальных траншей
Рис. 5. Этапы устройства форшахт ограждения по периметру и баретт, цементации основания и бетонирования плиты рабочего уровня
Рис. 6. Этапы устройства ограждающей конструкции, свай-баретт и экскавации котлована
под защитой бентонитового раствора. Водопроницаемость зацементированных грунтов контролируется по величине удельного водопоглощения, установленного при гидравлическом опробовании контрольных скважин. В основании баретт формируется непрерывный пласт сплошного зацементированного скального массива с нормативным пределом прочности на одноосное сжатие — R_с≥11,0 МПа. Для контроля прочности выполняется отбор образцов и их лабораторные испытания.
Этап 3 (рис. 6). Устройство траншейной стены ограждения подземной части методом «стена в грунте» гидрофрезерным оборудованием (единичная заходка — 2800 х 640 мм) в две очереди по захваткам с заведением в водоупор (ИГЭ-10) не менее чем на один метр. Устройство замыкающих грунтобетонных элементов, выполняемых по технологии струйной цементации грунта (Jet-1), между криволинейными захватками с заведением до отметки кровли скального грунта (ИГЭ-8).
Этап 4. Устройство баретт (2800 х 640 мм) с «сердечниками» под временные и постоянные железобетонные и стальные колонны и баретт под башенный кран по технологии «стена в грунте».
Этап 5. Демонтаж форшахт и железобетонной плиты рабочего уровня. Устройство фундамента башенного крана. Срубка шламового бетона верхней части ограждения котлована на высоту 500 мм. Устройство обвязочной балки и периферийной части плиты перекрытия на отметке (-0.100) по инвентарной опалубке.
Этап 6. Поэтапная экскавация котлована до отметки -4,550 м. Демонтаж временных колонн.
Этап 7. Устройство монолитной железобетонной плиты перекрытия на отметке (-4.550) по бетонной подготовке. Устройство вертикальных несущих конструкций минус первого этажа.
Этап 8. Устройство центральной части плиты перекрытия с технологическими проемами на отметке (-0.100). Эта конструкция позволяет вести работы по устройству надземной части здания, поскольку опирается на ранее выполненные сваи баретты и не требует устройства фундаментной плиты на минус третьем уровне. Начало строительства надземной части здания без ограничения скорости производства работ и этажности.
Этап 9. Разработка грунта котлована малогабаритной техникой до отметки -8.500. Устройство монолитной железобетонной плиты перекрытия минус второго этажа на отметке -8.200.
Этап 10. Разработка грунта котлована малогабаритной техникой до отметки -12,600 м. Срубка и оформление оголовков баретт. Устройство дренажной системы по дну котлована. Устройство монолитной железобетонной плиты пола минус третьего этажа.
Этап 11. Устройство вертикальных несущих конструкций минус третьего этажа.
Этап 12. Завершение работ по устройству монолитной железобетонной плиты минус второго этажа. Устройство пандусов и лестничных маршей. Устройство внутренней вертикальной гидроизоляции и прижимной монолитной железобетонной стенки на минус третьем этаже. Для устройства монолитной прижимной стенки в перекрытиях были предусмотрены технологические гильзы-направляющие.
Этап 13. Устройство вертикальных несущих конструкций минус второго этажа. Устройство внутренней вертикальной гидроизоляции и прижимной монолитной железобетонной стенки на минус втором этаже.
Этап 14. Ликвидация временного технологического проема в железобетонной плите на отметке -0.100. Демонтаж временных колонн.
Этап 15. Демонтаж башенного крана. Демонтаж ростверка и баретт башенного крана. Устройство внутренней вертикальной гидроизоляции и прижимной монолитной железобетонной стенки на минус первом этаже. Устройство наружной вертикальной гидроизоляции стилобатной части здания и благоустройство территории.
3. Геотехнический мониторинг
В ходе геотехнического мониторинга выполнялись высокоточные геодезические измерения отметок установленных деформационных марок, оценивалась динамика развития вертикальных перемещений зданий и проводилась визуальная оценка их технического состояния. Динамика развития наиболее интенсивных вертикальных перемещений показана на рис. 7. Вертикальные перемещения остальных марок имеют меньшие значения. Относительная разница дополнительных осадок фундаментов существующих зданий также не превысила предельно допустимого уровня.
Рис. 7. Динамика развития вертикальных перемещений деформационных марок
О стабилизации осадок зданий окружающей застройки можно судить по изменению скорости их развития, а она имеет явную тенденцию к снижению. Это можно хорошо проследить на графике построенных по данным наблюдений. Если в начальный период наблюдения она составляла 0,1…0,15 мм/сут, то через 90 суток она составила 0,03…0,45 мм/сут, следовательно, снизилась в 2,5 …3,0 раза. Такое снижение скорости развития абсолютной величины вертикальных перемещений свидетельствует о процессе их стабилизации.
Заключение
Выбор метода производства работ up-down по устройству здания в стесненных городских условиях оказался полностью оправданным. Использованные при реализации этого метода технологии позволили выполнить работы в установленные сроки, с качеством обеспечивающим механическую безопасность как строящегося объекта, так и окружающей застройки. Производство работ хотя и является технически сложным, но при надлежащем уровне мониторинга позволяет оптимизировать сроки проведения работ. Полученный в ходе строительства опыт может быть в дальнейшем использован при проектировании и строительстве объектов такого уровня сложности.
Литература
1. Абелев М. Ю. Особенности технологии проведения работ по устройству фундаментов: Учеб. пособие / М. Ю. Абелев, Б. М. Красновский. М.: Б. и., 1980. — 45 с.
2. Абелев М. Ю. Деформации сооружений в сложных инженерно-геологических условиях. М.: ЦМИПКС при МИСИ им. В. В. Куйбышева, 1982. — 290 c.
3. Строительство зданий и сооружений в сложных грунтовых условиях / [М. Ю. Абелев, В. А. Ильичев, С. Б. Ухов и др.]; под ред. М. Ю. Абелева. М.: Стройиздат, 1986. — 104 с.
4. Абелев М. Ю., Чунюк Д. Ю, Бровко Е. И. Выправление кренов высотных промышленных и гражданских зданий // Промышленное и гражданское строительство. 2016. — № 11. — С. 54–59.
5. Катценбах Р., Шмитт А., Рамм Х. Основные принципы проектирования и мониторинга высотных зданий Франкфурта-на-Майне. Случаи из практики // Реконструкция городов и геотехническое строительство. 2005. № 9. C. 80–99.
6. Конюхов Д. С. Строительство городских подземных сооружений мелкого заложения. М.: Архитектура, 2005. — 298 с.
7. Chang-Yu Ou. Deep Excavations. Theory and Practice. London: Taylor & Francis, 2006. — 532 p.
8. Щерба В. Г., Абелев К. М., Храмов Д. В., Сагалаков Г. В., Бахронов Р. Р. Особенности обеспечения объектов строительства монолитных многоэтажных зданий в стесненных городских условиях. //Вестник МГСУ. — 2008. — № 3. С. 146–149.
9. Юркевич П. Б. Возведение монолитных железобетонных перекрытий при полузакрытом способе строительства подземных сооружений //Подземное пространство мира. — 2002. — № 1. — С. 13–22.
10. Makovetskiy O., Zuev S. Practice device artificial improvement basis of soil technologies jet grouting. Procedia Engineering. — 2016. — Vol. 165: 15th Intern. sci. conf. Underground Urbanisation as a Prerequisite for Sustainable Development 12–15 Sept. 2016, St. Petersburg, Russia. — P. 504–509.
11. Маковецкий О. А. Зуев С. С. Опыт проведения испытаний баретты большой длины в условиях плотной городской застройки // Жилищное строительство. 2018. — № 9 —С. 13–18.
Авторы статьи:
М. Ю. АБЕЛЕВ, С. С. ЗУЕВ , Р. Р. АХМЕТШИН
Центр инновационных технологий в строительстве Института ДПО ГАСИС НИУ ВЩЭ
АО «Нью Граунд»
Принцип домино. Представители оконной индустрии надеются, что господдержка строительства жилья поможет сохранить их бизнес

Значительная часть производственных строительных компаний, несмотря на пандемию коронавируса в стране, в последние месяцы не прекращали свою деятельность. В том числе продолжали свою работу с соблюдением строгих санитарных норм и большинство производителей оконного профиля ПВХ. Тем не менее, игроков рынка тревожит ухудшение экономической ситуации в стране. Они ожидают, что растущий кризис заденет строительную отрасль, а значит - и их производственный сегмент.
Косвенная поддержка
Генеральный директор российского подразделения международного концерна Deceuninck (ООО «Декёнинк Рус») Фолькер Гут отмечает, что объявление режима самоизоляции вызвало сначала небывалый всплеск продаж у партнеров и, соответственно, в самой компании. В конце марта проходили отгрузки даже в выходные дни. Однако было понятно, что этот небывалый спрос обусловлен ожиданием заказчиками роста цен и их стремлением закрыть уже имеющуюся потребность до объявления жестких ограничений. Уже сейчас в целом по отрасли продажи окон в розничном сегменте падают. В строительстве данный тренд будет наблюдаться несколько позже.
«В ближайшей перспективе падение продаж в большинстве отраслей неизбежно, и наша, увы, не станет исключением. Со снижением доходов людям будет не до улучшения жилищных условий и, соответственно, не до окон, поскольку они не являются предметом первой необходимости. Нас ожидает, мягко говоря, крайне тяжелый год, и это понимают все участники рынка. Развитие ситуации зависит от длительности ограничительных мер, именно они в конечном итоге влияют на доходы населения, а значит - на покупательную способность. К сожалению, никто не может заглянуть в будущее, но уже ясно, что сильное падение неизбежно и в строительной, и в оконной отрасли, и оно вполне может превысить 25 %.Тем не менее, программы государственной поддержки и субсидирование ипотеки под 6,5 % смогут немного поддержать рынок недвижимости, и это дает надежду на то, что на строительном рынке падение будет не слишком драматичным»,- считает он.
Схожие выводы делают и другие игроки рынка. Руководитель группы компаний ИВАПЕР Светлана Иванова полагает, что государственная поддержка была бы в первую очередь полезна как для строительной отрасли в целом, так и для наших граждан в частности. «Возможности по расширению круга клиентов есть всегда, когда на рынке есть живой и платежеспособный спрос. Сейчас мы, очевидно, наблюдаем ослабление платежеспособности. Поскольку наша продукция находится в цепочке снабжения крупнейших строительных организаций, компания ИВАПЕР продолжает работу, и это уже само по себе очень позитивно. Мы не попали в список пострадавших предприятий и приветствуем любые действенные меры поддержки бизнеса, предложенные Правительством РФ в связи с пандемией. В частности, озвученные целевые показатели ипотеки под 6,5% и снижение единого социального налога без сомнения окажут позитивное воздействие на строительную отрасль и, косвенно, на наше развитие»,- уверена она.
«Если мы рассмотрим рынок массового жилищного строительства, - добавляет Светлана Иванова, - то в 2020–2022 гг. продолжается, вне зависимости от эпидемических каникул, реализация государственной программы «Обеспечение доступным и комфортным жильем и коммунальными услугами граждан Российской Федерации». В структуре строящегося жилья по России преобладают классы «эконом» и «комфорт», а значит должна быть потребность в качественных и простых окнах и дверях. Основной двигатель роста для нас и для строительной отрасли - деловая активность граждан, направленная на улучшение своих жилищных условий».
Руководитель направления Коммуникаций VEKA Rus Сергей Ельников считает, что сейчас государству важно решить задачу, направленную на повышение реальных доходов населения, которые сокращаются вот уже шесть лет подряд, и поднять которые разовыми мерами невозможно. «Если государство будет стимулировать развитие конкурентно-рыночной среды, поощрять малый и средний бизнес, создавать привлекательные условия для инвесторов – всё это в комплексе может со временем привести к созданию эффективных рабочих мест и росту доходов. Именно в этом ключ к росту рынков. Вместе с тем не могу не отметить разумность такой меры, как субсидирование ипотечного кредита, обязательства по выкупу части построенного жилья государством и его структурами, что может стать хорошим стимулом для строительной отрасли», - подчеркивает эксперт.
Держаться по курсу
Стоит отметить, что пандемия коронавируса, снижение мировых цен на нефть, ряд политических решений привели к повышению курса мировых валют и ослаблению рубля. В связи с этим многие строительные материалы, оборудование для ремонта иностранного, да и российского производства за последний месяц подорожали. Стоимость ПВХ- профилей имеет свои особенности.
В целом, поясняет заместитель генерального директора по маркетингу компании «ЭксПроф» Михаил Жолобов, цены на оконные ПВХ-профили зависят прежде всего от изменения рублевых цен на основное сырье – суспензионную ПВХ-смолу. А эти колебания в течение года бывают весьма значительными. Дело в том, что все мировое производство ПВХ концентрируется на очень крупных национальных и транснациональных предприятиях, оперирующих на глобальном рынке. В России всего четыре производителя ПВХ-смолы, а в мире в целом их не более двух-трех десятков. Для них нет особой разницы, на каком рынке – внешнем или внутреннем – продавать свою продукцию. Соответственно и цены они ежемесячно пересматривают, ориентируясь на текущую мировую конъюнктуру в долларах, которая также постоянно меняется. Колебания курса рубля оказывают дополнительное влияние на внутренние цены, но оно вторично.
«Проблема, скорее, в другом. Высококонкурентный рынок оказывает сильнейшее ценовое давление на производителей профиля и конструкций из него, побуждая недобросовестные компании экономить на качестве. В последние годы ситуация начала понемногу меняться, так как сами заказчики стали наконец понимать, чем различаются одинаковые с виду окна. Но рынок окон давно прошел стадию насыщения. Большинство эксплуатирующихся зданий уже получили современное остекление, и единственным значимым источником спроса остались только новостройки. Продолжится строительство – значит сохранится и спрос на продукцию», - резюмирует Михаил Жолобов.
По мнению Фолькера Гута, перенасыщение рынка действительно имеет место, но в 2021 году мы постепенно подойдем к осознанию, что ПВХ-окна первого поколения уже не выполняют своих функций и, соответственно, очень скоро потребуют замены. Это станет причиной того, что в ближайшие годы рынок начнет стабилизироваться, но и количество игроков на нем неизбежно уменьшится. Возможность для развития и роста отдельных компаний останется.
Игроки рынка считают, что в ближайшее время будет наблюдаться тренд на сочетание различных оконных профилей, улучшение их характеристик в плане энергоэффективности и т.д. «Сейчас важно дать импульс и пищу для размышлений о том, как развивается наш рынок и какие возможности вытекают из него», - полагает управляющий директор Aluplast Патрик Зейтц. В частности, добавил он, проанализировав потребности клиентов, в дополнение к теплому остеклению компанией уже предложено новое решение в эстетике ПВХ-окон с индивидуальным дизайнерским видом под алюминий или дерево.
«Зеленое» - в тренде. Экологичность строительной химии растет

Одним из базовых трендов в производстве строительной химии стало повышение экологичности и безопасности продукции.
Значительная часть материалов сегмента строительной химии относится к категории повышенной опасности для здоровья человека и окружающей среды. Этот фактор в большинстве случаев действует при невыполнении правил использования продукции.
По словам экспертов, наиболее вредными потенциально продуктами строительной химии являются материалы, содержащие органические растворители, в первую очередь ароматические, например, толуол, или хлорорганические. Работа с ними без соблюдения техники безопасности и использования специальных защитных средств может неблагоприятно сказаться на здоровье людей. В частности, вдыхание паров органических растворителей может приводить к острым респираторным заболеваниям, нарушению работы печени и почек.
При работе с полиуретановыми системами следует опасаться диизоцианатов, являющихся канцерогенными и тератогенными веществами. Очень важно избегать их контакта с органами дыхания и незащищенными участками кожи. Нужно понимать, добавляют специалисты, что строительная химия, как, впрочем, и бытовая, имеет свои особенности применения и связанные с этим ограничения. Если не соблюдать мер предосторожности, то пользоваться и средством для мытья посуды будет опасно.
Как отмечает руководитель направления R&D «Добавки в бетон» корпорации ТЕХНОНИКОЛЬ Андрей Малинин, по сравнению со многими другими продуктами строительной химии добавки в бетон все же стоят особняком. «Во-первых, они представляют собой, как правило, водные растворы. Использование в качестве растворителя обычной воды уже делает их практически безопасными. Добавки в бетон не содержат сильных кислот или щелочей, способных вызывать раздражение кожных покровов и слизистой или приводить к химическим ожогам. И наконец, многие компоненты, использующиеся в добавках, сами по себе являются веществами природного происхождения, так как это продукты переработки древесины. Некоторые из них настолько экологичны, что используются в борьбе с эрозией почв. Водный раствор полимера распыляется над проблемной зоной, стабилизирует почву, позволяя вырасти траве, а затем полностью безопасно биодеградирует под воздействием природных микроорганизмов», – рассказал он.
Стоит отметить, что в последние годы большинство производителей строительной химии старается минимизировать негативное воздействие своей продукции на человека и окружающую среду. Для достижения этих целей компании внедряют новые технологии в производство, начинают выпускать улучшенные по своим характеристикам материалы. «Дочки» иностранных концернов, крупные отечественные отраслевые компании работают по корпоративным стандартам повышенной экологичности своей продукции. В частности, такие холдинги, как Henkel, Kiilto, Sika, Basf, уже заменили в своих продуктах определенные вредные компоненты более безопасными.
В настоящее время и на уровне государства предъявляются более жесткие требования к качеству строительных материалов и их экологичности. Также становятся более популярными добровольная «зеленая» сертификация и декларирование продукции. Партнер и руководитель отдела экологической сертификации EcoStandard group Ксения Лукьященко отмечает, что важно учитывать влияние строительных материалов на окружающую среду на всем протяжении жизненного цикла (от добычи сырья, производства и выпуска продукции с завода, эксплуатации – до ее утилизации). «Сведения об этом могут содержаться в экологических декларациях продукции (EPD). Раскрытие информации таким способом говорит о производителе как об ответственном поставщике, который отвечает за качество своей продукции, а также за негативное воздействие, оказываемое ею на окружающую среду и человека. Распространение таких деклараций на рынке будет способствовать развитию и улучшению имиджа компаний, которые уделяют внимание этой важной проблеме», – уверена эксперт.
Кстати
По данным Росстата, по итогам 2019 года производство лакокрасочных материалов на основе полимеров выросло на 15,6% в сравнении с 2018 годом. Общий объем выпущенной продукции составил 1,1 млн т.