Опыт одновременного строительства подземной и надземной частей здания методом up-doun


14.07.2020 09:54

В условиях плотной городской застройки, а также дефицита свободных участков подземное строительство приобретает особую актуальность, однако местная специфика и гидрогеологические условия делают задачу возведения подземных объектов очень непростой. Это стимулирует инженеров использовать новые методы, которые обеспечивают безопасную эксплуатацию окружающей застройки, позволяют проводить подземные работы практически на любой глубине даже в самых сложных инженерных и геологических условиях. Одним из таких является метод up-down, или «вверх-вниз». Такой способ позволяет на нулевой отметке выполнить перекрытие и продолжить строительство одновременно как вверх, так и вниз. Данная технология является актуальной в современных условиях строительства, так как позволяет возводить здания с меньшим задействованием близлежащих территорий. В статье описан принцип технологии up-down, представлен порядок производства работ, рассмотрены основные преимущества и недостатки данного метода, приведены результаты геотехнического мониторинга окружающей застройки.


Основной областью применения метода up-down является устройство глубоких котлованов в пределах плотной городской застройки. Обычно этот метод используется при невозможности выполнения грунтовых анкеров вследствие стесненных условий и существующей развитой подземной части на соседних участках [1–7]. Кроме того, этот метод используется при малых допустимых деформациях окружающих зданий и сооружений. Явным преимуществом метода up-down является высокий темп строительства при устройстве высотной части (рис. 1).

схема

Рис. 1. Схема производства работ по методу up-down

При многих преимуществах этого метода строительства он в большинстве случаев ведет к удорожанию строительного производства по сравнению со строительством в открытом котловане. Особую сложность представляет собой организация снабжения и логистики при подобном виде работ [8]. Следует отметить, что устройство подземной части по методу «вверх-вниз» требует высокой квалификации подрядчика и детальной проектной проработки [9].

Для производства работ по устройству подземной части при данном методе строительства используется технологии «стена в грунте» и струйная цементация грунта (Jet-grouting). Проектирование конфигурации стены выполняется с учетом особенностей технологического оборудования (гидрофрезы). В ходе подготовительных работ по контуру будущей ограждающей конструкции выполняется форшахта шириной 60…80 см и глубиной до 3,0 м. Стенки форшахты раскрепляются железобетонными монолитными конструкциями.

Разработка грунта в траншее и бетонирование выполняются под защитой глиняного тиксотропного раствора, приготовляемого из бентонитовой глины, что обеспечивает устойчивость стенок траншеи от обрушения. Параметры раствора корректируются при производстве работ на опытном участке.

Укладка бетонной смеси панелей ограждающей конструкции производится методом вертикального подъема трубы. Бетонирование стен под защитой глиняного раствора должно выполняться не позднее чем через 8 часов после образования траншеи в захватке. Бетонирование одной захватки проводится непрерывно на всю высоту. Между захватками выполняется холодный рабочий шов, а армирование захватки — сборными пространственными арматурными каркасами. Глубина ограждающей конструкции по данной технологии может достигать 25…30 м.

По грунтовым условиям «стена в грунте» может применяться в любых дисперсных грунтах.

При устройстве больших котлованов, внутри которых возводится здание или сооружение, ограждающие конструкции, выполненные методом «стена в грунте», используют как внешние стены подземной части. В этом случае нагрузка от здания передается на фундаменты, не связанные с ограждающими стенами.

При необходимости ограждающие конструкции, устраиваемые методом «стена в грунте», могут выполнять двойную функцию: являются и ограждением котлована, и конструктивным элементом.

Современные технологии позволяют устраивать конструкции подземных сооружений разных форм, но традиционные и наиболее часто встречающиеся — конструкции из прямолинейных стенок.

При наличии грунтов, содержащих твердые включения природного или техногенного происхождения (крупные валуны, обломки бетонных конструкций, каменной кладки и др.), при проходке траншеи используется техника, оснащенная фрезерным оборудованием, например, фирм «Бауэр», «Касагранде».

Использование грейферного оборудования, которым крупные включения извлекаются, может привести к деформированию стенки траншеи, падению уровня тиксотропного раствора и деформациям окружающего массива и близ расположенных зданий.

Для надежного уплотнения проблемных стыков между панелями траншейных стен, как показал опыт строительства, успешно может быть применена технология струйной цементации jet-grouting. Она заключается в разрушении и перемешивании грунта мощнонапорной струей цементного раствора, исходящего под высоким давлением из монитора, расположенного на нижнем конце буровой колонны. В результате в грунтовом массиве формируются сваи диаметром 0,6–1,5 м из нового материала — грунтобетона с достаточно высокими несущими и противофильтрационными характеристиками. При этом цементационные работы могут выполняться как снаружи ограждающих котлован стен, так и изнутри котлована до его разработки. С этой целью в зависимости от прогнозируемой величины раскрытия стыков с глубиной могут быть применены неармируемые или армируемые металлическими трубами грунтоцементные колонны диаметром 60 или 80 см.

Для разработки грунтового ядра внутри подземного сооружения, возводимого способом «стена в грунте», рекомендуется применять технологию, которая предусматривает разработку вначале центральной части грунтового массива на глубину одного яруса с сохранением по периферии нетронутых участков. Такой прием облегчает работу ограждающей конструкции. Затем монтируются распорные конструкции, и разрабатывается оставшаяся часть грунта. Одним из существенных преимуществ данных технологий является возможность устройства как отдельных, так и протяженных подземных конструкций с поверхности земли без экскавации котлована [10].

Производство работ по методу up-down считается одним из самых сложных видов строительного производства с геотехнической точки зрения и предусматривает комплексную программу мониторинга в период строительства здания [11].

  1. Характеристика объекта строительства

Рассматриваемая площадка строительства обладает практически всеми перечисленными осложняющими факторами:

Инженерно-геологические и гидрогеологические условия.

В геологическом строении площадки принимают участие следующие элементы (рис. 2): ИГЭ-1. Современные техногенные отложения, песчано-суглинистые грунты со щебнем кирпича. ИГЭ-2. Глина мягкопластичной консистенции. ИГЭ-3. Суглинки мягкопластичной и тугопластичной консистенции. ИГЭ-4. Супеси пластичные. ИГЭ-5. Пески пылеватые, средней плотности, водонасыщенные. ИГЭ-6. Пески мелкие, средней плотности, водонасыщенные. ИГЭ-7. Пески средней крупности, средней плотности, водонасыщенные. ИГЭ-8.1. Глина полутвердая. ИГЭ-8. Мергель малопрочный. ИГЭ-9.1. Известняк, разрушенный до щебня и дресвы. ИГЭ-9. Известняк малопрочный. ИГЭ-10. Глина полутвердая.

Подземная вода встречена на глубине 3,7…4,0 м от поверхности.

В представленных инженерно-геологических условиях, при наличии в основании значительной толщи слабых грунтов и высоком уровне грунтовых вод, основным требованием к ограждающей конструкции котлована является обеспечение минимального поступления воды в котлован и ограничение дополнительных вертикальных перемещений окружающей застройки. Для определения зданий и сооружений, на которые возможно влияние от строительства проектируемого, предварительно назначается 30-метровая зона, которая впоследствии уточняется расчетами. Выполняется обследование зданий, определяется история их строительства, техническое состояние основных конструктивных элементов. Величина допустимого влияния определяется исходя из условия обеспечения надежности здания и зависит от его технического состояния и конструктивной схемы.

 схема площадки

Рис. 2. Инженерно-геологический разрез площадки строительства

Градостроительная и геотехническая ситуация.

Строящееся здание возводится в существующем квартале исторической застройки на месте демонтированного здания. При этом по градостроительным условиям было необходимо сохранить исторический фасад здания, выходящий на улицу. В зону влияния строительства попадают 15 зданий, техническое состояние зданий по результатам обследования оценено как удовлетворительное, предельные дополнительные осадки этих зданий ограничены диапазоном 10…30 мм. Для обеспечения сохранности и механической безопасности зданий при производстве работ по строительству здания и в ходе его эксплуатации необходимо было выполнить комплекс работ по улучшению механических свойств грунтовых оснований (метод компенсационного нагнетания цементного раствора) и усилению конструкции фундаментов. На всех этапах производства работ был организован мониторинг за развитием вертикальных перемещений и техническим состоянием основных конструкций зданий. Схема расположения наблюдательных марок приведена на рис. 3.

Схема размещения наблюдательных марок (вертикальные перемещения)

 Рис. 3. Схема размещения наблюдательных марок (вертикальные перемещения)

Характеристика строящегося здания.

Здание монолитное, железобетонное, с максимальной отметкой верха 34,10 м, прямоугольной формы в плане, состоящее из 6-этажной надземной части и 3-этажной подземной части (гаража). Несущие конструкции — продольные и поперечные монолитные железобетонные стены и колонны. Максимальная глубина котлована 12,60 м. Способ разработки котлована up-down: заглубление под защитой дисков плит перекрытий с возможностью одновременного строительства вверх. Конструкция ограждения котлована: траншейная стена толщиной 640 мм, выполняемая гидрофрезерным оборудованием (базовая машина BAUER BG-28 с гидрофрезой BC-32). Фундамент — свайное поле со сваями-бареттами, опирающимися на однородный скальный грунт (известняки). Вся эксплуатационная нагрузка передается на сваи, железобетонная плита подстилающего слоя толщиной 250 мм не связывается со сваями.

2. Последовательность выполнения работ

Производство работ по устройству подземной части здания выполнялось в следующей последовательности:

Этап 1. Выполнение компенсационного нагнетания цементного раствора в грунтовое основание фундаментов зданий окружающей застройки. Усиление конструкции фундаментов зданий окружающей застройки. Устройство буроинъекционых свай в основании фундаментов сохраняемой части фасада (рис. 4).

Рис. 4. Схема выполнения работ по усилению грунтового основания фундаментов существующих зданий

Рис. 4. Схема выполнения работ по усилению грунтового основания фундаментов существующих зданий

Усиленный таким образом грунтовый массив является новым техногенным образованием, обладающим высокой степенью жесткости. Методика уплотнения позволяет уплотнять не только дисперсные связанные грунты (глины, суглинки, супеси), но и несвязанные дисперсные грунты (пески, насыпные техногенные грунты). Расширение возможностей применения технологии на широком спектре грунтов происходит за счет подбора качественной характеристики раствора, обеспечивающей ее высокую проникающую способность. Наличие грунтовых вод не является противопоказанием к применению высоконапорной инъекции.

Этап 2 (рис. 5). Выполнение форшахт для устройства ограждения по периметру подземной части здания и для выполнения свай-баретт. Производство работ по устройству монолитной железобетонной плиты рабочего уровня с направляющими гильзами для устройства скважин цементации. Бурение скважин и цементация скального грунта. После цементации вдоль периметра ограждения котлована образуется слой скального грунта с достаточными противофильтрационными свойствами для разработки вертикальных траншей

Рис. 5. Этапы устройства форшахт ограждения по периметру и баретт, цементации основания и бетонирования плиты рабочего уровня

Рис. 5. Этапы устройства форшахт ограждения по периметру и баретт, цементации основания и бетонирования плиты рабочего уровня

Рис. 6. Этапы устройства ограждающей конструкции, свай-баретт и экскавации котлована

под защитой бентонитового раствора. Водопроницаемость зацементированных грунтов контролируется по величине удельного водопоглощения, установленного при гидравлическом опробовании контрольных скважин. В основании баретт формируется непрерывный пласт сплошного зацементированного скального массива с нормативным пределом прочности на одноосное сжатие — R_с≥11,0 МПа. Для контроля прочности выполняется отбор образцов и их лабораторные испытания.

Этап 3 (рис. 6). Устройство траншейной стены ограждения подземной части методом «стена в грунте» гидрофрезерным оборудованием (единичная заходка — 2800 х 640 мм) в две очереди по захваткам с заведением в водоупор (ИГЭ-10) не менее чем на один метр. Устройство замыкающих грунтобетонных элементов, выполняемых по технологии струйной цементации грунта (Jet-1), между криволинейными захватками с заведением до отметки кровли скального грунта (ИГЭ-8).

Этап 4. Устройство баретт (2800 х 640 мм) с «сердечниками» под временные и постоянные железобетонные и стальные колонны и баретт под башенный кран по технологии «стена в грунте».

Этап 5. Демонтаж форшахт и железобетонной плиты рабочего уровня. Устройство фундамента башенного крана. Срубка шламового бетона верхней части ограждения котлована на высоту 500 мм. Устройство обвязочной балки и периферийной части плиты перекрытия на отметке (-0.100) по инвентарной опалубке.

Этап 6. Поэтапная экскавация котлована до отметки -4,550 м. Демонтаж временных колонн.

Этап 7. Устройство монолитной железобетонной плиты перекрытия на отметке (-4.550) по бетонной подготовке. Устройство вертикальных несущих конструкций минус первого этажа.

Этап 8. Устройство центральной части плиты перекрытия с технологическими проемами на отметке (-0.100). Эта конструкция позволяет вести работы по устройству надземной части здания, поскольку опирается на ранее выполненные сваи баретты и не требует устройства фундаментной плиты на минус третьем уровне. Начало строительства надземной части здания без ограничения скорости производства работ и этажности.

Этап 9. Разработка грунта котлована малогабаритной техникой до отметки -8.500. Устройство монолитной железобетонной плиты перекрытия минус второго этажа на отметке -8.200.

Этап 10. Разработка грунта котлована малогабаритной техникой до отметки -12,600 м. Срубка и оформление оголовков баретт. Устройство дренажной системы по дну котлована. Устройство монолитной железобетонной плиты пола минус третьего этажа.

Этап 11. Устройство вертикальных несущих конструкций минус третьего этажа.

Этап 12. Завершение работ по устройству монолитной железобетонной плиты минус второго этажа. Устройство пандусов и лестничных маршей. Устройство внутренней вертикальной гидроизоляции и прижимной монолитной железобетонной стенки на минус третьем этаже. Для устройства монолитной прижимной стенки в перекрытиях были предусмотрены технологические гильзы-направляющие.

Этап 13. Устройство вертикальных несущих конструкций минус второго этажа. Устройство внутренней вертикальной гидроизоляции и прижимной монолитной железобетонной стенки на минус втором этаже.

Этап 14. Ликвидация временного технологического проема в железобетонной плите на отметке -0.100. Демонтаж временных колонн.

Этап 15. Демонтаж башенного крана. Демонтаж ростверка и баретт башенного крана. Устройство внутренней вертикальной гидроизоляции и прижимной монолитной железобетонной стенки на минус первом этаже. Устройство наружной вертикальной гидроизоляции стилобатной части здания и благоустройство территории.

3. Геотехнический мониторинг

В ходе геотехнического мониторинга выполнялись высокоточные геодезические измерения отметок установленных деформационных марок, оценивалась динамика развития вертикальных перемещений зданий и проводилась визуальная оценка их технического состояния. Динамика развития наиболее интенсивных вертикальных перемещений показана на рис. 7. Вертикальные перемещения остальных марок имеют меньшие значения. Относительная разница дополнительных осадок фундаментов существующих зданий также не превысила предельно допустимого уровня.

 Рис. 7. Динамика развития вертикальных перемещений деформационных марок

Рис. 7. Динамика развития вертикальных перемещений деформационных марок

О стабилизации осадок зданий окружающей застройки можно судить по изменению скорости их развития, а она имеет явную тенденцию к снижению. Это можно хорошо проследить на графике построенных по данным наблюдений. Если в начальный период наблюдения она составляла 0,1…0,15 мм/сут, то через 90 суток она составила 0,03…0,45 мм/сут, следовательно, снизилась в 2,5 …3,0 раза. Такое снижение скорости развития абсолютной величины вертикальных перемещений свидетельствует о процессе их стабилизации.

Заключение

Выбор метода производства работ up-down по устройству здания в стесненных городских условиях оказался полностью оправданным. Использованные при реализации этого метода технологии позволили выполнить работы в установленные сроки, с качеством обеспечивающим механическую безопасность как строящегося объекта, так и окружающей застройки. Производство работ хотя и является технически сложным, но при надлежащем уровне мониторинга позволяет оптимизировать сроки проведения работ. Полученный в ходе строительства опыт может быть в дальнейшем использован при проектировании и строительстве объектов такого уровня сложности.

Литература

1. Абелев М. Ю. Особенности технологии проведения работ по устройству фундаментов: Учеб. пособие / М. Ю. Абелев, Б. М. Красновский. М.: Б. и., 1980. — 45 с.

2. Абелев М. Ю. Деформации сооружений в сложных инженерно-геологических условиях. М.: ЦМИПКС при МИСИ им. В. В. Куйбышева, 1982. — 290 c.

3. Строительство зданий и сооружений в сложных грунтовых условиях / [М. Ю. Абелев, В. А. Ильичев, С. Б. Ухов и др.]; под ред. М. Ю. Абелева. М.: Стройиздат, 1986. — 104 с.

4. Абелев М. Ю., Чунюк Д. Ю, Бровко Е. И. Выправление кренов высотных промышленных и гражданских зданий // Промышленное и гражданское строительство. 2016. — № 11. — С. 54–59.

5. Катценбах Р., Шмитт А., Рамм Х. Основные принципы проектирования и мониторинга высотных зданий Франкфурта-на-Майне. Случаи из практики // Реконструкция городов и геотехническое строительство. 2005. № 9. C. 80–99.

6. Конюхов Д. С. Строительство городских подземных сооружений мелкого заложения. М.: Архитектура, 2005. — 298 с.

7. Chang-Yu Ou. Deep Excavations. Theory and Practice. London: Taylor & Francis, 2006. — 532 p.

8. Щерба В. Г., Абелев К. М., Храмов Д. В., Сагалаков Г. В., Бахронов Р. Р. Особенности обеспечения объектов строительства монолитных многоэтажных зданий в стесненных городских условиях. //Вестник МГСУ. — 2008. — № 3. С. 146–149.

9. Юркевич П. Б. Возведение монолитных железобетонных перекрытий при полузакрытом способе строительства подземных сооружений //Подземное пространство мира. — 2002. — № 1. — С. 13–22.

10. Makovetskiy O., Zuev S. Practice device artificial improvement basis of soil technologies jet grouting. Procedia Engineering. — 2016. — Vol. 165: 15th Intern. sci. conf. Underground Urbanisation as a Prerequisite for Sustainable Development 12–15 Sept. 2016, St. Petersburg, Russia. — P. 504–509.

11. Маковецкий О. А. Зуев С. С. Опыт проведения испытаний баретты большой длины в условиях плотной городской застройки // Жилищное строительство. 2018. — № 9 —С. 13–18.

Авторы статьи: 

М. Ю. АБЕЛЕВ, С. С. ЗУЕВ , Р. Р. АХМЕТШИН

Центр инновационных технологий в строительстве Института ДПО ГАСИС НИУ ВЩЭ
АО «Нью Граунд»

 

 

 




Мал, да удал


03.09.2019 15:19

По оценке экспертов, за последние несколько лет сменилась структура приобретателей малых грузовых лифтов. Если раньше основными их покупателями были частные компании, то сейчас это в большей степени учреждения образования, общественного питания и здравоохранения, финансируемые государством.


К малым грузовым лифтам относят подъемное оборудование, предназначенное для перемещения грузов массой до 250–300 кг. Транспортировка людей в них запрещена. Несмотря на то, что малые грузовые лифты не требуют регистрации в Ростехнадзоре, их собственники должны выполнять все правила эксплуатации подъемного оборудования, разработанные этим ведомством.

В настоящее время эти конструкции применяются в кафе, ресторанах, офисных центрах, банках, в элитных многоуровневых квартирах и коттеджах. Также их используют в госучреждениях, а именно в типовых зданиях больниц, детских садов, школ, почты и т. д.

 

Трудности госзаказа

По словам заместителя генерального директора ЗАО «Предприятие ПАРНАС» Ольги Егоренко, за последние несколько лет произошло существенное изменение структуры потребителей малых лифтов. Если раньше около 65% всех продаж приходились на частный сектор (кафе, рестораны, магазины и проч.) и только 35% – на объекты госзаказа, то на сегодняшний день 70% – это учреждения образования, общественного пита­­ния, здравоохранения, культурно-бытового обслу­­живания, финансируемые государством. Во многом это связано, как считает эксперт, с усилением внимания государства к развитию социнфраструктуры.

«Сами социальные учреждения само­стоя­тельно закупают лифтовое оборудование нечасто, делается это через вышестоящие структуры. Связано это, во-первых, с тем, что лифты – оборудование сложное, при заказе нужно учитывать множество нюансов, с которыми представители школ, детсадов не всегда в состоянии разобраться. Бывает, что и специалисты-лифтовики не всегда в курсе последних технологических новаций. Во-вторых, сами закупки через процедуру торгов требуют недюжинного терпения от всех сторон процесса и имеют ряд очевидных недостатков. Мы часто встречаемся с такими проектами, в которых малые грузовые лифты просто обозначены «квадратиком», не указаны даже размеры, не то что характеристики. В то же время в системе госзаказа есть подвижки. Мы, например, возлагаем надежды на новый инструмент «Электронный магазин» в системе госзаказа Санкт-Петербурга, которым могут пользоваться все учреждения. Пока у нас этим инструментом пользуются мало и с опаской, хотя в Москве аналогичная система работает уже несколько лет довольно активно. В-третьих, поставка и установка лифтов зачастую включена в комплекс строительных работ, в этом случае выбор лифтового оборудования и ответственность лежат на строительной организации, а лифтовики уже являются субподрядчиками», – отмечает Ольга Егоренко.

 

Особые стандарты

Главный конструктор ОАО «Щербинский лифтовой завод» Сергей Павлов отмечает, что малые грузовые лифты бывают двух основных типов. Первый – поставляемые в глухую шахту, которую заказчик строит на объекте самостоятельно из кирпича или бетона. Второй тип – малые грузовые лифты, которые поставляются совместно с металлокаркасной шахтой, произведенной на заводе.

«Сложнее в производстве, конечно, малые грузовые лифты с металлическими шахтами. Поскольку помимо оборудования надо произвести еще и шахту. В целом же сегодня у клиентов очень высокие требования к вопросам огнестойкости конструкции, опасности перехода горения с этажа на этаж. Поэтому более востребованы глухие шахты, которые позволяют защититься от проникновения огня. Металлическая шахта в этом плане не защищает», – подчеркнул он.

Особые стандарты предъявляются и к малым грузовым лифтам, которые будут задействованы в кухонных помещениях столовых в детских садах, школах и больницах. В частности, двери в шахту должны изготавливаться из огнеупорного металла с показателем предела стойкости не ниже EI30. В соответствии с санитарными нормами для транспортировки готовых блюд кабины лифта должны изготавливаться из нержавеющей стали. Также рекомендовано оснащать грузовые лифты специальными электронными замками. Это убережет от проникновения в них посторонних лиц, например, от школьников, решивших «покататься».

По словам старшего менеджера компании «Оптима» Дмитрия Вилеева, в настоящее время внешне и конструктивно малые грузовые лифты отличаются друг от друга. «Ранее, тем более в советское время, они только выполняли свою основную технологическую функцию и внешне были достаточно неприглядны. В настоящее время ситуация изменилась. Заказчику стали важны внешний дизайн и эргономика. Многие малые грузовые лифты теперь напичканы электроникой. В частности, есть таймер, автоматическое раскрытие дверей кабины», – отмечает он.

Стоимость малых грузовых лифтов, как отмечает эксперт, начинается с 250–300 тыс. рублей. С набором электроники цена составит 400–500 тыс. рублей и выше, достигая 1 млн. На цену влияют размеры кабины, шахты, необходимая скорость перемещения подъемника. Нестандартные конструкции, выполненные под заказ клиента, также будут несколько дороже.

 

Мнение

Ольга Егоренко, заместитель генерального директора ЗАО «Предприятие ПАРНАС»:

Несмотря на «малость» данных лифтов, их производство – достаточно трудоемкий и сложный процесс, ведь нормы и правила технического регулирования, применяемые к такому подъемному оборудованию, даже строже, чем в Европе.

Система Россаккредитации РФ строго следит за подтверждением качества этой продукции. Ввод в эксплуатацию лифта и сервисное обслуживание тоже жестко регламентированы.

Все требования, конечно, направлены на повышение безопасности и комфорта эксплуатации, выполнить их не всегда просто, а потому появление новой модели лифта – это событие! Наш Малый Грузовой Лифт ПАРНАС ЛМП – один из таких лифтов. И мы гордимся им!

Новых моделей за последний год мы не выпускали, однако регулярно ведутся конструкторские работы по усовершенствованию. Сейчас, например, проводятся испытания малого лифта «ПАРНАС ЛМП» в обновленной версии по новому ГОСТ Р.

 

 


АВТОР: Виктор Краснов
ИСТОЧНИК: СЕ №26(883) от 02.09.2019
ИСТОЧНИК ФОТО: Никита Крючков


Не остаться без архива


02.09.2019 16:41

В Ленобласти расформирован единый архивный фонд инженерных изысканий. Хранением и выдачей документов теперь будут заниматься органы местного самоуправления.


С 1 сентября 2019 года ГАУ «Леноблгосэкспертиза» прекращает оказание услуг по регистрации и учету результатов инженерных изысканий, проводимых в Лен­области. В том числе учреждение не будет заниматься выдачей архивных материалов по изысканиям из специализированного фонда, в котором был собран массив данных с 1947 года.

Как говорится в сообщении на сайте ГАУ «Леноблгосэкспертиза», теперь подготовкой документации по изысканиям и выдачей архивных сведений будут заниматься районные органы местного самоуправления. Им уже переданы все материалы по изысканиям, которые проходили на их территории. Решение о распределении архива было принято во исполнение п. 51 ст. 26 Федерального закона № 342-ФЗ «О внесении изменений в Градостроительный кодекс РФ» от 3 августа 2018 года.

 

Двоякое толкование

Новшеством серьезно обеспокоено сообщество изыскателей. По их мнению, ликвидация единого архива и работа с документами «на местах» может негативно отразиться на сроках и качестве проведения изысканий.

Заместитель генерального директора ООО «Гильдия Геодезистов» Сергей Лазарев уже написал открытое письмо губернатору Ленобласти Александру Дрозденко. В нем он от имени всех изыскателей, проектировщиков и девелоперов Санкт-Петербурга и Ленобласти просит главу региона вмешаться в ситуацию и предотвратить разрушение архива о пространственных данных, который долгие годы создавался большим трудом и силами сотен изыскательских компаний.

«Отсутствие единого архива приведет к снижению качества инженерных изысканий, скорости работы. Вследствие функционирования без него возрастет также количество аварийных случаев на строительных объектах. Можно ожидать фальсификации согласований инженерных сетей для прохождения экспертизы ввиду отсутствия проверяющего органа», – уверен Сергей Лазарев.

Главный инженер ООО «Изыскатель» Кирилл Черняк обращает внимание на казусы норм п. 51 ст. 26 Закона 342-ФЗ. По его словам, из текста видно, что допускается различное толкование, куда именно должны быть переданы данные об инженерных изысканиях – в органы власти субъектов РФ или в органы местного самоуправления.

«Существовала годами отработанная система сдачи материалов в архив. В последнее время было проведено множество улучшений, связанных с возможностью передачи материалов в цифровом виде, а также с заказом, получением и сдачей материалов в онлайн-режиме. Была сделана удобная геоинформационная система на базе сайта Geobridge. С передачей всех функций в различные органы местного самоуправления все это будет утеряно», – высказывает озабоченность эксперт.

 

Немного оптимизма

По словам генерального директора ООО «Гео-Вектор» Сергея Мясникова, теперь на органы местного самоуправления и на исполнителей изыскательских работ лягут дополнительные трудозатраты в плане обработки и получения информации.

Органы местного самоуправления будут выполнять функцию  приемки и оценки качества  работ по районам, предупреждать недобросовестное выполнение проектов. 

Кроме того, под их ответственностью теперь будет ведение архива данных, аккумулирующего все работы в направлениях изыскательской деятельности, который ранее по всем районам вело ГАУ «Леноблгосэкпертиза».

«Нововведения повлекут увеличение сроков проведения изысканий, так как любые изменения в законодательстве требуют времени на адаптацию к новым правилам взаимодействия. Но мы верим, что в перспективе работа будет оптимизирована и будущее за цифровой трансформацией», – считает он.

Схожие выводы делает и генеральный директор ЗАО «ЛенТИСИЗ» Николай Олейник. Он отметил, что среди всех регионов РФ, в которых приходилось работать организации, только «Леноблгосэкспертиза» требовала от изыскателей предоставления согласования верности нанесения абсолютно всех инженерных сетей, попадавших в границы топосъемки. Данные строгие правила не допускали сдачу заказчику недостоверных материалов изыс­каний, заказчик всегда мог быть уверен, что выданные ему материалы изысканий соответствуют действительности.

«Надеюсь, что данная процедура сохранится и в муниципалитетах, но для этого общий штат специалистов по приемке материалов изысканий в районах Ленобласти должен будет увеличиться в десятки раз по сравнению со штатом, который отвечал за это в «Леноблгосэкспертизе». Добавлю, что единый фонд материалов до 1990 года по территории всей Ленобласти также хранится в архиве ЛенТИСИЗ, и в ближайшие несколько лет мы планируем его оцифровать. Сведения из него намерены интегрировать в информационный портал Geobridge, куда до недавнего времени «Леноблгосэкспертиза» вносила сведения об имеющихся у них материалах изысканий», – подчеркнул Николай Олейник.

 

Мнение

Сергей Лазарев, заместитель генерального директора ООО «Гильдия Геодезистов»:

Для изыскателей работа с «местными» фондами будет сопровождаться большими денежными затратами вследствие больших расстояний, времени и локальных бюрократических проволочек. Кроме того, к моменту их создания большая часть сведений о пространственных данных может стать уже неактуальной.

 

Сергей Мясников, генеральный директор ООО «Гео-Вектор»:

При этом в данных условиях ожидается повышенная активность мелких недобросовестных компаний – «однодневок», которые будут предлагать провести инженерные изыскания по низким ценам и в кратчайшие сроки, пренебрегая важными этапами и условиями работы.

Например, такой исполнитель может сэкономить на проведении сверки всех сетей в рамках проведения работ. Последствия – от порванного в процессе стройки кабеля до взрыва газопровода. Некачественно выполнено бурение, экономия на количестве и глубине скважин, - и в перспективе трещины в зданиях.

Мелкие компании могут через несколько лет уже не существовать и, соответственно, отвечать за последствия будет некому.
Поэтому задача заказчиков инженерных изысканий – обращаться к серьезным проверенным компаниям с хорошей репутацией, а не гнаться за призрачно выгодными условиями («быстро и дешево»), ставя под угрозу будущее проекта и создавая вероятность возникновения последствий с угрозой уголовной ответственности.


АВТОР: Виктор Краснов
ИСТОЧНИК: СЕ№26(883) от 02.09.2019
ИСТОЧНИК ФОТО: asninfo.ru