Опыт одновременного строительства подземной и надземной частей здания методом up-doun


14.07.2020 09:54

В условиях плотной городской застройки, а также дефицита свободных участков подземное строительство приобретает особую актуальность, однако местная специфика и гидрогеологические условия делают задачу возведения подземных объектов очень непростой. Это стимулирует инженеров использовать новые методы, которые обеспечивают безопасную эксплуатацию окружающей застройки, позволяют проводить подземные работы практически на любой глубине даже в самых сложных инженерных и геологических условиях. Одним из таких является метод up-down, или «вверх-вниз». Такой способ позволяет на нулевой отметке выполнить перекрытие и продолжить строительство одновременно как вверх, так и вниз. Данная технология является актуальной в современных условиях строительства, так как позволяет возводить здания с меньшим задействованием близлежащих территорий. В статье описан принцип технологии up-down, представлен порядок производства работ, рассмотрены основные преимущества и недостатки данного метода, приведены результаты геотехнического мониторинга окружающей застройки.


Основной областью применения метода up-down является устройство глубоких котлованов в пределах плотной городской застройки. Обычно этот метод используется при невозможности выполнения грунтовых анкеров вследствие стесненных условий и существующей развитой подземной части на соседних участках [1–7]. Кроме того, этот метод используется при малых допустимых деформациях окружающих зданий и сооружений. Явным преимуществом метода up-down является высокий темп строительства при устройстве высотной части (рис. 1).

схема

Рис. 1. Схема производства работ по методу up-down

При многих преимуществах этого метода строительства он в большинстве случаев ведет к удорожанию строительного производства по сравнению со строительством в открытом котловане. Особую сложность представляет собой организация снабжения и логистики при подобном виде работ [8]. Следует отметить, что устройство подземной части по методу «вверх-вниз» требует высокой квалификации подрядчика и детальной проектной проработки [9].

Для производства работ по устройству подземной части при данном методе строительства используется технологии «стена в грунте» и струйная цементация грунта (Jet-grouting). Проектирование конфигурации стены выполняется с учетом особенностей технологического оборудования (гидрофрезы). В ходе подготовительных работ по контуру будущей ограждающей конструкции выполняется форшахта шириной 60…80 см и глубиной до 3,0 м. Стенки форшахты раскрепляются железобетонными монолитными конструкциями.

Разработка грунта в траншее и бетонирование выполняются под защитой глиняного тиксотропного раствора, приготовляемого из бентонитовой глины, что обеспечивает устойчивость стенок траншеи от обрушения. Параметры раствора корректируются при производстве работ на опытном участке.

Укладка бетонной смеси панелей ограждающей конструкции производится методом вертикального подъема трубы. Бетонирование стен под защитой глиняного раствора должно выполняться не позднее чем через 8 часов после образования траншеи в захватке. Бетонирование одной захватки проводится непрерывно на всю высоту. Между захватками выполняется холодный рабочий шов, а армирование захватки — сборными пространственными арматурными каркасами. Глубина ограждающей конструкции по данной технологии может достигать 25…30 м.

По грунтовым условиям «стена в грунте» может применяться в любых дисперсных грунтах.

При устройстве больших котлованов, внутри которых возводится здание или сооружение, ограждающие конструкции, выполненные методом «стена в грунте», используют как внешние стены подземной части. В этом случае нагрузка от здания передается на фундаменты, не связанные с ограждающими стенами.

При необходимости ограждающие конструкции, устраиваемые методом «стена в грунте», могут выполнять двойную функцию: являются и ограждением котлована, и конструктивным элементом.

Современные технологии позволяют устраивать конструкции подземных сооружений разных форм, но традиционные и наиболее часто встречающиеся — конструкции из прямолинейных стенок.

При наличии грунтов, содержащих твердые включения природного или техногенного происхождения (крупные валуны, обломки бетонных конструкций, каменной кладки и др.), при проходке траншеи используется техника, оснащенная фрезерным оборудованием, например, фирм «Бауэр», «Касагранде».

Использование грейферного оборудования, которым крупные включения извлекаются, может привести к деформированию стенки траншеи, падению уровня тиксотропного раствора и деформациям окружающего массива и близ расположенных зданий.

Для надежного уплотнения проблемных стыков между панелями траншейных стен, как показал опыт строительства, успешно может быть применена технология струйной цементации jet-grouting. Она заключается в разрушении и перемешивании грунта мощнонапорной струей цементного раствора, исходящего под высоким давлением из монитора, расположенного на нижнем конце буровой колонны. В результате в грунтовом массиве формируются сваи диаметром 0,6–1,5 м из нового материала — грунтобетона с достаточно высокими несущими и противофильтрационными характеристиками. При этом цементационные работы могут выполняться как снаружи ограждающих котлован стен, так и изнутри котлована до его разработки. С этой целью в зависимости от прогнозируемой величины раскрытия стыков с глубиной могут быть применены неармируемые или армируемые металлическими трубами грунтоцементные колонны диаметром 60 или 80 см.

Для разработки грунтового ядра внутри подземного сооружения, возводимого способом «стена в грунте», рекомендуется применять технологию, которая предусматривает разработку вначале центральной части грунтового массива на глубину одного яруса с сохранением по периферии нетронутых участков. Такой прием облегчает работу ограждающей конструкции. Затем монтируются распорные конструкции, и разрабатывается оставшаяся часть грунта. Одним из существенных преимуществ данных технологий является возможность устройства как отдельных, так и протяженных подземных конструкций с поверхности земли без экскавации котлована [10].

Производство работ по методу up-down считается одним из самых сложных видов строительного производства с геотехнической точки зрения и предусматривает комплексную программу мониторинга в период строительства здания [11].

  1. Характеристика объекта строительства

Рассматриваемая площадка строительства обладает практически всеми перечисленными осложняющими факторами:

Инженерно-геологические и гидрогеологические условия.

В геологическом строении площадки принимают участие следующие элементы (рис. 2): ИГЭ-1. Современные техногенные отложения, песчано-суглинистые грунты со щебнем кирпича. ИГЭ-2. Глина мягкопластичной консистенции. ИГЭ-3. Суглинки мягкопластичной и тугопластичной консистенции. ИГЭ-4. Супеси пластичные. ИГЭ-5. Пески пылеватые, средней плотности, водонасыщенные. ИГЭ-6. Пески мелкие, средней плотности, водонасыщенные. ИГЭ-7. Пески средней крупности, средней плотности, водонасыщенные. ИГЭ-8.1. Глина полутвердая. ИГЭ-8. Мергель малопрочный. ИГЭ-9.1. Известняк, разрушенный до щебня и дресвы. ИГЭ-9. Известняк малопрочный. ИГЭ-10. Глина полутвердая.

Подземная вода встречена на глубине 3,7…4,0 м от поверхности.

В представленных инженерно-геологических условиях, при наличии в основании значительной толщи слабых грунтов и высоком уровне грунтовых вод, основным требованием к ограждающей конструкции котлована является обеспечение минимального поступления воды в котлован и ограничение дополнительных вертикальных перемещений окружающей застройки. Для определения зданий и сооружений, на которые возможно влияние от строительства проектируемого, предварительно назначается 30-метровая зона, которая впоследствии уточняется расчетами. Выполняется обследование зданий, определяется история их строительства, техническое состояние основных конструктивных элементов. Величина допустимого влияния определяется исходя из условия обеспечения надежности здания и зависит от его технического состояния и конструктивной схемы.

 схема площадки

Рис. 2. Инженерно-геологический разрез площадки строительства

Градостроительная и геотехническая ситуация.

Строящееся здание возводится в существующем квартале исторической застройки на месте демонтированного здания. При этом по градостроительным условиям было необходимо сохранить исторический фасад здания, выходящий на улицу. В зону влияния строительства попадают 15 зданий, техническое состояние зданий по результатам обследования оценено как удовлетворительное, предельные дополнительные осадки этих зданий ограничены диапазоном 10…30 мм. Для обеспечения сохранности и механической безопасности зданий при производстве работ по строительству здания и в ходе его эксплуатации необходимо было выполнить комплекс работ по улучшению механических свойств грунтовых оснований (метод компенсационного нагнетания цементного раствора) и усилению конструкции фундаментов. На всех этапах производства работ был организован мониторинг за развитием вертикальных перемещений и техническим состоянием основных конструкций зданий. Схема расположения наблюдательных марок приведена на рис. 3.

Схема размещения наблюдательных марок (вертикальные перемещения)

 Рис. 3. Схема размещения наблюдательных марок (вертикальные перемещения)

Характеристика строящегося здания.

Здание монолитное, железобетонное, с максимальной отметкой верха 34,10 м, прямоугольной формы в плане, состоящее из 6-этажной надземной части и 3-этажной подземной части (гаража). Несущие конструкции — продольные и поперечные монолитные железобетонные стены и колонны. Максимальная глубина котлована 12,60 м. Способ разработки котлована up-down: заглубление под защитой дисков плит перекрытий с возможностью одновременного строительства вверх. Конструкция ограждения котлована: траншейная стена толщиной 640 мм, выполняемая гидрофрезерным оборудованием (базовая машина BAUER BG-28 с гидрофрезой BC-32). Фундамент — свайное поле со сваями-бареттами, опирающимися на однородный скальный грунт (известняки). Вся эксплуатационная нагрузка передается на сваи, железобетонная плита подстилающего слоя толщиной 250 мм не связывается со сваями.

2. Последовательность выполнения работ

Производство работ по устройству подземной части здания выполнялось в следующей последовательности:

Этап 1. Выполнение компенсационного нагнетания цементного раствора в грунтовое основание фундаментов зданий окружающей застройки. Усиление конструкции фундаментов зданий окружающей застройки. Устройство буроинъекционых свай в основании фундаментов сохраняемой части фасада (рис. 4).

Рис. 4. Схема выполнения работ по усилению грунтового основания фундаментов существующих зданий

Рис. 4. Схема выполнения работ по усилению грунтового основания фундаментов существующих зданий

Усиленный таким образом грунтовый массив является новым техногенным образованием, обладающим высокой степенью жесткости. Методика уплотнения позволяет уплотнять не только дисперсные связанные грунты (глины, суглинки, супеси), но и несвязанные дисперсные грунты (пески, насыпные техногенные грунты). Расширение возможностей применения технологии на широком спектре грунтов происходит за счет подбора качественной характеристики раствора, обеспечивающей ее высокую проникающую способность. Наличие грунтовых вод не является противопоказанием к применению высоконапорной инъекции.

Этап 2 (рис. 5). Выполнение форшахт для устройства ограждения по периметру подземной части здания и для выполнения свай-баретт. Производство работ по устройству монолитной железобетонной плиты рабочего уровня с направляющими гильзами для устройства скважин цементации. Бурение скважин и цементация скального грунта. После цементации вдоль периметра ограждения котлована образуется слой скального грунта с достаточными противофильтрационными свойствами для разработки вертикальных траншей

Рис. 5. Этапы устройства форшахт ограждения по периметру и баретт, цементации основания и бетонирования плиты рабочего уровня

Рис. 5. Этапы устройства форшахт ограждения по периметру и баретт, цементации основания и бетонирования плиты рабочего уровня

Рис. 6. Этапы устройства ограждающей конструкции, свай-баретт и экскавации котлована

под защитой бентонитового раствора. Водопроницаемость зацементированных грунтов контролируется по величине удельного водопоглощения, установленного при гидравлическом опробовании контрольных скважин. В основании баретт формируется непрерывный пласт сплошного зацементированного скального массива с нормативным пределом прочности на одноосное сжатие — R_с≥11,0 МПа. Для контроля прочности выполняется отбор образцов и их лабораторные испытания.

Этап 3 (рис. 6). Устройство траншейной стены ограждения подземной части методом «стена в грунте» гидрофрезерным оборудованием (единичная заходка — 2800 х 640 мм) в две очереди по захваткам с заведением в водоупор (ИГЭ-10) не менее чем на один метр. Устройство замыкающих грунтобетонных элементов, выполняемых по технологии струйной цементации грунта (Jet-1), между криволинейными захватками с заведением до отметки кровли скального грунта (ИГЭ-8).

Этап 4. Устройство баретт (2800 х 640 мм) с «сердечниками» под временные и постоянные железобетонные и стальные колонны и баретт под башенный кран по технологии «стена в грунте».

Этап 5. Демонтаж форшахт и железобетонной плиты рабочего уровня. Устройство фундамента башенного крана. Срубка шламового бетона верхней части ограждения котлована на высоту 500 мм. Устройство обвязочной балки и периферийной части плиты перекрытия на отметке (-0.100) по инвентарной опалубке.

Этап 6. Поэтапная экскавация котлована до отметки -4,550 м. Демонтаж временных колонн.

Этап 7. Устройство монолитной железобетонной плиты перекрытия на отметке (-4.550) по бетонной подготовке. Устройство вертикальных несущих конструкций минус первого этажа.

Этап 8. Устройство центральной части плиты перекрытия с технологическими проемами на отметке (-0.100). Эта конструкция позволяет вести работы по устройству надземной части здания, поскольку опирается на ранее выполненные сваи баретты и не требует устройства фундаментной плиты на минус третьем уровне. Начало строительства надземной части здания без ограничения скорости производства работ и этажности.

Этап 9. Разработка грунта котлована малогабаритной техникой до отметки -8.500. Устройство монолитной железобетонной плиты перекрытия минус второго этажа на отметке -8.200.

Этап 10. Разработка грунта котлована малогабаритной техникой до отметки -12,600 м. Срубка и оформление оголовков баретт. Устройство дренажной системы по дну котлована. Устройство монолитной железобетонной плиты пола минус третьего этажа.

Этап 11. Устройство вертикальных несущих конструкций минус третьего этажа.

Этап 12. Завершение работ по устройству монолитной железобетонной плиты минус второго этажа. Устройство пандусов и лестничных маршей. Устройство внутренней вертикальной гидроизоляции и прижимной монолитной железобетонной стенки на минус третьем этаже. Для устройства монолитной прижимной стенки в перекрытиях были предусмотрены технологические гильзы-направляющие.

Этап 13. Устройство вертикальных несущих конструкций минус второго этажа. Устройство внутренней вертикальной гидроизоляции и прижимной монолитной железобетонной стенки на минус втором этаже.

Этап 14. Ликвидация временного технологического проема в железобетонной плите на отметке -0.100. Демонтаж временных колонн.

Этап 15. Демонтаж башенного крана. Демонтаж ростверка и баретт башенного крана. Устройство внутренней вертикальной гидроизоляции и прижимной монолитной железобетонной стенки на минус первом этаже. Устройство наружной вертикальной гидроизоляции стилобатной части здания и благоустройство территории.

3. Геотехнический мониторинг

В ходе геотехнического мониторинга выполнялись высокоточные геодезические измерения отметок установленных деформационных марок, оценивалась динамика развития вертикальных перемещений зданий и проводилась визуальная оценка их технического состояния. Динамика развития наиболее интенсивных вертикальных перемещений показана на рис. 7. Вертикальные перемещения остальных марок имеют меньшие значения. Относительная разница дополнительных осадок фундаментов существующих зданий также не превысила предельно допустимого уровня.

 Рис. 7. Динамика развития вертикальных перемещений деформационных марок

Рис. 7. Динамика развития вертикальных перемещений деформационных марок

О стабилизации осадок зданий окружающей застройки можно судить по изменению скорости их развития, а она имеет явную тенденцию к снижению. Это можно хорошо проследить на графике построенных по данным наблюдений. Если в начальный период наблюдения она составляла 0,1…0,15 мм/сут, то через 90 суток она составила 0,03…0,45 мм/сут, следовательно, снизилась в 2,5 …3,0 раза. Такое снижение скорости развития абсолютной величины вертикальных перемещений свидетельствует о процессе их стабилизации.

Заключение

Выбор метода производства работ up-down по устройству здания в стесненных городских условиях оказался полностью оправданным. Использованные при реализации этого метода технологии позволили выполнить работы в установленные сроки, с качеством обеспечивающим механическую безопасность как строящегося объекта, так и окружающей застройки. Производство работ хотя и является технически сложным, но при надлежащем уровне мониторинга позволяет оптимизировать сроки проведения работ. Полученный в ходе строительства опыт может быть в дальнейшем использован при проектировании и строительстве объектов такого уровня сложности.

Литература

1. Абелев М. Ю. Особенности технологии проведения работ по устройству фундаментов: Учеб. пособие / М. Ю. Абелев, Б. М. Красновский. М.: Б. и., 1980. — 45 с.

2. Абелев М. Ю. Деформации сооружений в сложных инженерно-геологических условиях. М.: ЦМИПКС при МИСИ им. В. В. Куйбышева, 1982. — 290 c.

3. Строительство зданий и сооружений в сложных грунтовых условиях / [М. Ю. Абелев, В. А. Ильичев, С. Б. Ухов и др.]; под ред. М. Ю. Абелева. М.: Стройиздат, 1986. — 104 с.

4. Абелев М. Ю., Чунюк Д. Ю, Бровко Е. И. Выправление кренов высотных промышленных и гражданских зданий // Промышленное и гражданское строительство. 2016. — № 11. — С. 54–59.

5. Катценбах Р., Шмитт А., Рамм Х. Основные принципы проектирования и мониторинга высотных зданий Франкфурта-на-Майне. Случаи из практики // Реконструкция городов и геотехническое строительство. 2005. № 9. C. 80–99.

6. Конюхов Д. С. Строительство городских подземных сооружений мелкого заложения. М.: Архитектура, 2005. — 298 с.

7. Chang-Yu Ou. Deep Excavations. Theory and Practice. London: Taylor & Francis, 2006. — 532 p.

8. Щерба В. Г., Абелев К. М., Храмов Д. В., Сагалаков Г. В., Бахронов Р. Р. Особенности обеспечения объектов строительства монолитных многоэтажных зданий в стесненных городских условиях. //Вестник МГСУ. — 2008. — № 3. С. 146–149.

9. Юркевич П. Б. Возведение монолитных железобетонных перекрытий при полузакрытом способе строительства подземных сооружений //Подземное пространство мира. — 2002. — № 1. — С. 13–22.

10. Makovetskiy O., Zuev S. Practice device artificial improvement basis of soil technologies jet grouting. Procedia Engineering. — 2016. — Vol. 165: 15th Intern. sci. conf. Underground Urbanisation as a Prerequisite for Sustainable Development 12–15 Sept. 2016, St. Petersburg, Russia. — P. 504–509.

11. Маковецкий О. А. Зуев С. С. Опыт проведения испытаний баретты большой длины в условиях плотной городской застройки // Жилищное строительство. 2018. — № 9 —С. 13–18.

Авторы статьи: 

М. Ю. АБЕЛЕВ, С. С. ЗУЕВ , Р. Р. АХМЕТШИН

Центр инновационных технологий в строительстве Института ДПО ГАСИС НИУ ВЩЭ
АО «Нью Граунд»

 

 

 



Поделиться:

Выход на фасад


15.10.2019 16:12

По мнению экспертов, отмена технических свидетельств оценки качества фасадных штукатурных теплоизоляционных систем поможет снизить входные барьеры для новых игроков рынка и ускорит его дальнейшее развитие.


 

Минстрой России отменяет необходимость получения технических свидетельств оценки пригодности систем фасадных теплоизоляционных композиционных с наружными штукатурными слоями (СФТК). В ведомстве считают эту процедуру избыточной и устаревшей. Чиновники считают: действую­щих нормативных требований к СФТК достаточно для производства качественной продукции.

Напомним, СФТК также называют системой «мокрый фасад». Теплоизоляционный материал скрывается за штукатуркой и монтируется клеем, т. е. «мокрым» путем. В настоя­щее время данная технология активно применяется как в массовом, так и индивидуальном строительстве.

 

Запрос бизнеса

По словам председателя комитета по строительству организации «Деловая Россия» Владимира Кошелева, институт выдачи технических свидетельств был введен еще в 1998 году. «Индустрия промышленности строительных материалов в течение последних 20 лет не стояла на месте, появились качественно новые высокотехнологичные материалы и конструкции. Рынок диктует необходимость серьезной конкурентной борьбы за потребителя, и работа Минстроя по изменению нормативной документации отвечает запросам бизнеса. Вместе с тем нельзя забывать, что любые действия, касаю­щиеся надежности и безопасности, должны быть четко выверены, и не должны оставлять ни малейшего шанса для маневра недобросовестным игрокам рынка», – считает он.

Как отмечает Кирилл Иванов, председатель координационного совета РАПЭКС (Российская ассоциация производителей теплоизоляционных материалов из экструдированного пенополистирола), это решение Минстроя РФ вполне оправданно в рамках государственной программы снижения входных барьеров для новых игроков строительного рынка. Более того, Ассоциация производителей и поставщиков фасадных систем АНФАС проделала большую работу по созданию стандартов, регламентирующих устройство фасадов. Теперь и подрядчики, и регулирующие органы имеют полную техническую базу для оценки качества той или иной системы.

Продолжать тренд

По мнению экспертов, получение технических свидетельств скорее необходимо для конструкций из новых материалов, ранее не применявшихся в строительстве. Присутствующие на рынке строительные материалы нуждаются в дальнейшем снижении избыточных регулятивных мер. Кроме того, считают специалисты, необходимо менять и некоторые действующие СНиПы и СП.

По словам Кирилла Иванова, в каждой области строительства есть требования, которые в той или иной степени избыточны. «В нашей стране строгость законов часто компенсируется их неисполнением. Поэтому в Ассоциации РАПЭКС считают, что нужно идти двумя путями: добиваться исполнения принятых стандартов и технических решений и параллельно менять требования, которые улучшат качество и надежность строительных работ. Так, например, мы хотим пересмотреть нормативные значения термического сопротивления конструкций в СП 50.13330.2012 «Тепловая защита зданий». Исследование Сергея Крышова, начальника отдела экспертиз зданий и сооружений на соответствие теплотехническим и акустическим требованиям «Центра экспертиз, исследований и испытаний в строительстве» (ГБУ «ЦЭИИС»), показывает, что часть зданий и сооружений, построенных в Москве, не соответствуют существующим нормативным требованиям. Поэтому нужно требовать от строителей исполнения действую­щих стандартов и разрабатывать новые требования по энергоэффективности, с прицелом на будущее»,– резюмирует Кирилл Иванов.

Руководитель направления «Стандартизация и сертификация» корпорации «Технониколь» Сергей Кол­­дашев отмечает, что строительная отрасль в России довольно консервативна. В некоторых сегментах специалистам до сих пор приходится руководствоваться нормами, принятыми еще в советское время. Нужно признать, что к настоящему моменту большой фонд Сводов правил уже обновился, некоторые из них даже дважды. Однако в Постановлении Правительства РФ от 26 декабря 2014 года № 1521 «Об утверждении перечня нацио­нальных стандартов и сводов правил (частей таких стандартов и сводов правил)», в результате применения которых на обязательной основе обеспечивается соблюдение требований федерального закона «Технический регламент о безопасности зданий и сооружений», до сих пор находятся документы, выпущенные до 2011 года. «Для отрасли, на наш взгляд, большое значение имеет обновление прежде всего этого постановления, с указанием актуальных на сегодня Сводов правил. Иначе сегодня проектировщики вынуждены применять устаревшие нормы проектирования. В целом же работа по модернизации СНиПов идет полным ходом, это процесс не прекращается, в этом смысле ситуация скорее позитивная», – подчеркнул эксперт.

 

Мнение

Кирилл Иванов, председатель координационного совета РАПЭКС:

Важно обращать внимание не только на качество исходных материалов, но и на качество проводимых работ. Так было всегда. СФТК – сложная система, в которой каждый компонент играет важную роль в обеспечении надежности всего фасада. Качественная теплоизоляция заявленной плотности, качественные штукатурные составы с заявленной адгезией, квалифицированное выполнение монтажа – вот основные факторы долговечности штукатурного фасада. Особое внимание Ассоциация РАПЭКС уделяет СФТК в зоне цоколя и первых этажей. Очевидно, что к теплоизоляционному материалу, предназначенному для утепления данных ограждающих конструкций, должны предъявляться особо жесткие требования. Это продиктовано рисками переувлажнения первых и цокольных этажей. В процессе эксплуатации зданий влажностное состояние материалов непосредственно влияет на теплозащитные свойства ограждаю­щих конструкций и на энергоэффективность применяемых систем теплоизоляции. Поэтому члены Ассоциации РАПЭКС, производители XPS-теплоизоляции на территории РФ, рекомендуют использовать в данной зоне экструдированный пенополистирол.


АВТОР: Виктор Краснов
ИСТОЧНИК: СЕ_Ло №10(109) от 14.10.2019
ИСТОЧНИК ФОТО: «Технониколь»

Поделиться:

Строить без простоя


15.10.2019 11:56

 

Противоморозные добавки в бетон помогают ему затвердеть при отрицательных температурах воздуха. Эффективность их действия во многом зависит от соблюдения технологии их применения.


 

Строительство в зимний период имеет ряд особенностей. В значительной степени это касается работ по возведению конструкций зданий из монолитного бетона. Чем ниже температура воздуха, тем медленнее будет происходить отвердевание. При этом присутствующая в материале вода при замерзании превращается в лед и после оттаивания разрушает структуру бетона. Существует несколько способов ускорения затвердения и сохранения прочности материала, которые в своей работе задействуют застройщики.

 

Без оглядки на сезон

Директор проекта «Северная до­­лина» компании «Главстрой-СПб» Дмитрий Калинин рассказывает, что основные особенности строительства в холодный период связаны с производством «мокрых» процессов, проведением отделочных, монолитных работ. В этом случае помогают проверенные решения, например, прогрев бетона и применение морозостойких сертифицированных добавок. Также современные технологии позволяют без снижения качества работать зимой на кровле. «Кроме того, чтобы выдерживать высокие темпы строительства в зимний период, мы используем мобильные котельные, которые обеспечивают полноценное теплоснабжение строя­щихся зданий. Они подключаются к внутренним инженерным сетям и отапливают весь корпус, позволяя активно вести отделочные, электротехнические и другие виды работ без оглядки на сезон», – отмечает он.

По словам руководителя НТЦ «Полипласт Северо-Запад» Игоря Коваля, строительные работы в зимний период, как правило, обходятся заметно дороже. Например, в советское время был нормативно установлен повышающий коэффициент 1,2, так что удешевиться в холодный период вряд ли получится. В ряде стран мира зимой бетонные работы не ведут, в том числе и по причине их удорожания. В наших современных условиях главное – определиться, какой метод выдерживания бетона до получения необходимой прочности принимается. От этого будут зависеть виды используемых противоморозных добавок (ПМД) и их необходимое количество.

 

Соблюдая правила

Специалисты отмечают, что подготовка бетонной смеси в зимний период должна идти со строгим соблюдением всех технологических правил. В частности, и при использовании противоморозных добавок.

Руководитель направления «До­­бавки в бетон» корпорации ТЕХНОНИКОЛЬ Василий Шрамко подчеркивает, что, производя заливку бетона, необходимо не допускать замерзания свежеуложенной смеси в опалубке. По окончании заливки необходимо обеспечить уход за конструкцией до достижения ею минимальной прочности, при которой допускается замораживание (консервация) до наступления положительной температуры окружающей среды и возобновления кинетики набора прочности.

По словам эксперта, замораживание свежеуложенной бетонной смеси без противоморозных добавок крайне негативно сказывается на конечной прочности конструктива, вплоть до полного разрушения бетонного камня. Согласно СП 70.13330.2012 (п. 5.11), бетонирование в зимний период осуществляется способом термоса или ускоренного термоса в комбинации с электротермообработкой. Цель бетонирования данным способом заключается в обеспечении бетонной конструкции не менее 30% от марочной прочности и не менее 20% прочности при условии применения противоморозных добавок с последующим замораживанием конструктива. Согласно ТР 80-98 (п.1.4), бетон, подвергшийся консервации путем замораживания, при наступлении положительной среднесуточной температуры в период 28 суток добирает недостающую прочность.

Сегодня, как поясняет Игорь Коваль, противоморозных добавок, по ГОСТ 26633-2015 ограниченных величиной 5% от массы цемента и позволяющих уверенно твердеть бетону при температуре внутри него ниже –5–7 °С, не существует. «Поэтому большинство таких добавок предназначено исключительно для предотвращения процессов подмораживания смеси до начала ее активного прогрева различными методами: греющие провода, электроды, управляемые «тепляки», «термосы». Подобного рода добавок достаточно много у всех, и дозировки их, как правило, небольшие или умеренные, в пределах 0,5–1,5% от массы цемента по товарным продуктам. В связи с этим применение противоморозных добавок должно быть связано с ожидаемыми значениями: температурой окружающей среды и методом прогрева конструкции. В отдельных случаях возможно производство бетонных работ без их применения вообще», – отмечает эксперт.

 

Мнение

Игорь Коваль, руководитель НТЦ «Полипласт Северо-Запад»:

Среди добавок от «Полипласт Северо-Запад» рекомендуем комплексные «Криопласт ПК» в премиум-сегменте, «Криопласт Альфа» в сегменте бюджетных добавок и неплохую линейку чистых антифризов «Криопласт 30», «Полипласт Норд», совместимых со всеми видами пластификаторов. Следует также отметить, что наша компания принципиально заботится о клиентах и не использует в ПМД приводящие к коррозии арматуры в бетоне, хотя и весьма дешевые, противоморозные добавки на основе хлоридов кальция и натрия.

 

Антон Ружило, федеральный технический специалист направления «Добавки в бетон» корпорации ТЕХНОНИКОЛЬ:

Бетонирование в зимний период – достаточно сложный и ответственный этап строительства, требующий комплексного подхода и соблюдения всех требований к производству, транспортировке, укладке бетонной смеси и последующему уходу за конструктивом, а противоморозная «химия» является неотъемлемой частью данного процесса. Принцип работы противоморозных добавок Технониколь линейки ICE заключается в предотвращении замерзания воды, входящей в состав бетонной смеси при ее укладке, что особенно актуально в случае бетонирования плиты перекрытия большой площади. Поскольку заливка таких конструкций занимает довольно длительный период времени (зачастую более 15 часов), а обеспечение укрытия и прогрева, как правило, возможно только по окончании бетонирования, – температура бетонной смеси местами может опускаться ниже 0 °С. Противоморозные добавки Технониколь ICE позволяют в данном случае благополучно закончить процесс бетонирования и обеспечить уход за конструкцией без потери прочностных свойств.


АВТОР: Виктор Краснов
ИСТОЧНИК: СЕ_Ло №10(109) от 14.10.2019
ИСТОЧНИК ФОТО: Никита Крючков

Поделиться: