Опыт одновременного строительства подземной и надземной частей здания методом up-doun


14.07.2020 09:54

В условиях плотной городской застройки, а также дефицита свободных участков подземное строительство приобретает особую актуальность, однако местная специфика и гидрогеологические условия делают задачу возведения подземных объектов очень непростой. Это стимулирует инженеров использовать новые методы, которые обеспечивают безопасную эксплуатацию окружающей застройки, позволяют проводить подземные работы практически на любой глубине даже в самых сложных инженерных и геологических условиях. Одним из таких является метод up-down, или «вверх-вниз». Такой способ позволяет на нулевой отметке выполнить перекрытие и продолжить строительство одновременно как вверх, так и вниз. Данная технология является актуальной в современных условиях строительства, так как позволяет возводить здания с меньшим задействованием близлежащих территорий. В статье описан принцип технологии up-down, представлен порядок производства работ, рассмотрены основные преимущества и недостатки данного метода, приведены результаты геотехнического мониторинга окружающей застройки.


Основной областью применения метода up-down является устройство глубоких котлованов в пределах плотной городской застройки. Обычно этот метод используется при невозможности выполнения грунтовых анкеров вследствие стесненных условий и существующей развитой подземной части на соседних участках [1–7]. Кроме того, этот метод используется при малых допустимых деформациях окружающих зданий и сооружений. Явным преимуществом метода up-down является высокий темп строительства при устройстве высотной части (рис. 1).

схема

Рис. 1. Схема производства работ по методу up-down

При многих преимуществах этого метода строительства он в большинстве случаев ведет к удорожанию строительного производства по сравнению со строительством в открытом котловане. Особую сложность представляет собой организация снабжения и логистики при подобном виде работ [8]. Следует отметить, что устройство подземной части по методу «вверх-вниз» требует высокой квалификации подрядчика и детальной проектной проработки [9].

Для производства работ по устройству подземной части при данном методе строительства используется технологии «стена в грунте» и струйная цементация грунта (Jet-grouting). Проектирование конфигурации стены выполняется с учетом особенностей технологического оборудования (гидрофрезы). В ходе подготовительных работ по контуру будущей ограждающей конструкции выполняется форшахта шириной 60…80 см и глубиной до 3,0 м. Стенки форшахты раскрепляются железобетонными монолитными конструкциями.

Разработка грунта в траншее и бетонирование выполняются под защитой глиняного тиксотропного раствора, приготовляемого из бентонитовой глины, что обеспечивает устойчивость стенок траншеи от обрушения. Параметры раствора корректируются при производстве работ на опытном участке.

Укладка бетонной смеси панелей ограждающей конструкции производится методом вертикального подъема трубы. Бетонирование стен под защитой глиняного раствора должно выполняться не позднее чем через 8 часов после образования траншеи в захватке. Бетонирование одной захватки проводится непрерывно на всю высоту. Между захватками выполняется холодный рабочий шов, а армирование захватки — сборными пространственными арматурными каркасами. Глубина ограждающей конструкции по данной технологии может достигать 25…30 м.

По грунтовым условиям «стена в грунте» может применяться в любых дисперсных грунтах.

При устройстве больших котлованов, внутри которых возводится здание или сооружение, ограждающие конструкции, выполненные методом «стена в грунте», используют как внешние стены подземной части. В этом случае нагрузка от здания передается на фундаменты, не связанные с ограждающими стенами.

При необходимости ограждающие конструкции, устраиваемые методом «стена в грунте», могут выполнять двойную функцию: являются и ограждением котлована, и конструктивным элементом.

Современные технологии позволяют устраивать конструкции подземных сооружений разных форм, но традиционные и наиболее часто встречающиеся — конструкции из прямолинейных стенок.

При наличии грунтов, содержащих твердые включения природного или техногенного происхождения (крупные валуны, обломки бетонных конструкций, каменной кладки и др.), при проходке траншеи используется техника, оснащенная фрезерным оборудованием, например, фирм «Бауэр», «Касагранде».

Использование грейферного оборудования, которым крупные включения извлекаются, может привести к деформированию стенки траншеи, падению уровня тиксотропного раствора и деформациям окружающего массива и близ расположенных зданий.

Для надежного уплотнения проблемных стыков между панелями траншейных стен, как показал опыт строительства, успешно может быть применена технология струйной цементации jet-grouting. Она заключается в разрушении и перемешивании грунта мощнонапорной струей цементного раствора, исходящего под высоким давлением из монитора, расположенного на нижнем конце буровой колонны. В результате в грунтовом массиве формируются сваи диаметром 0,6–1,5 м из нового материала — грунтобетона с достаточно высокими несущими и противофильтрационными характеристиками. При этом цементационные работы могут выполняться как снаружи ограждающих котлован стен, так и изнутри котлована до его разработки. С этой целью в зависимости от прогнозируемой величины раскрытия стыков с глубиной могут быть применены неармируемые или армируемые металлическими трубами грунтоцементные колонны диаметром 60 или 80 см.

Для разработки грунтового ядра внутри подземного сооружения, возводимого способом «стена в грунте», рекомендуется применять технологию, которая предусматривает разработку вначале центральной части грунтового массива на глубину одного яруса с сохранением по периферии нетронутых участков. Такой прием облегчает работу ограждающей конструкции. Затем монтируются распорные конструкции, и разрабатывается оставшаяся часть грунта. Одним из существенных преимуществ данных технологий является возможность устройства как отдельных, так и протяженных подземных конструкций с поверхности земли без экскавации котлована [10].

Производство работ по методу up-down считается одним из самых сложных видов строительного производства с геотехнической точки зрения и предусматривает комплексную программу мониторинга в период строительства здания [11].

  1. Характеристика объекта строительства

Рассматриваемая площадка строительства обладает практически всеми перечисленными осложняющими факторами:

Инженерно-геологические и гидрогеологические условия.

В геологическом строении площадки принимают участие следующие элементы (рис. 2): ИГЭ-1. Современные техногенные отложения, песчано-суглинистые грунты со щебнем кирпича. ИГЭ-2. Глина мягкопластичной консистенции. ИГЭ-3. Суглинки мягкопластичной и тугопластичной консистенции. ИГЭ-4. Супеси пластичные. ИГЭ-5. Пески пылеватые, средней плотности, водонасыщенные. ИГЭ-6. Пески мелкие, средней плотности, водонасыщенные. ИГЭ-7. Пески средней крупности, средней плотности, водонасыщенные. ИГЭ-8.1. Глина полутвердая. ИГЭ-8. Мергель малопрочный. ИГЭ-9.1. Известняк, разрушенный до щебня и дресвы. ИГЭ-9. Известняк малопрочный. ИГЭ-10. Глина полутвердая.

Подземная вода встречена на глубине 3,7…4,0 м от поверхности.

В представленных инженерно-геологических условиях, при наличии в основании значительной толщи слабых грунтов и высоком уровне грунтовых вод, основным требованием к ограждающей конструкции котлована является обеспечение минимального поступления воды в котлован и ограничение дополнительных вертикальных перемещений окружающей застройки. Для определения зданий и сооружений, на которые возможно влияние от строительства проектируемого, предварительно назначается 30-метровая зона, которая впоследствии уточняется расчетами. Выполняется обследование зданий, определяется история их строительства, техническое состояние основных конструктивных элементов. Величина допустимого влияния определяется исходя из условия обеспечения надежности здания и зависит от его технического состояния и конструктивной схемы.

 схема площадки

Рис. 2. Инженерно-геологический разрез площадки строительства

Градостроительная и геотехническая ситуация.

Строящееся здание возводится в существующем квартале исторической застройки на месте демонтированного здания. При этом по градостроительным условиям было необходимо сохранить исторический фасад здания, выходящий на улицу. В зону влияния строительства попадают 15 зданий, техническое состояние зданий по результатам обследования оценено как удовлетворительное, предельные дополнительные осадки этих зданий ограничены диапазоном 10…30 мм. Для обеспечения сохранности и механической безопасности зданий при производстве работ по строительству здания и в ходе его эксплуатации необходимо было выполнить комплекс работ по улучшению механических свойств грунтовых оснований (метод компенсационного нагнетания цементного раствора) и усилению конструкции фундаментов. На всех этапах производства работ был организован мониторинг за развитием вертикальных перемещений и техническим состоянием основных конструкций зданий. Схема расположения наблюдательных марок приведена на рис. 3.

Схема размещения наблюдательных марок (вертикальные перемещения)

 Рис. 3. Схема размещения наблюдательных марок (вертикальные перемещения)

Характеристика строящегося здания.

Здание монолитное, железобетонное, с максимальной отметкой верха 34,10 м, прямоугольной формы в плане, состоящее из 6-этажной надземной части и 3-этажной подземной части (гаража). Несущие конструкции — продольные и поперечные монолитные железобетонные стены и колонны. Максимальная глубина котлована 12,60 м. Способ разработки котлована up-down: заглубление под защитой дисков плит перекрытий с возможностью одновременного строительства вверх. Конструкция ограждения котлована: траншейная стена толщиной 640 мм, выполняемая гидрофрезерным оборудованием (базовая машина BAUER BG-28 с гидрофрезой BC-32). Фундамент — свайное поле со сваями-бареттами, опирающимися на однородный скальный грунт (известняки). Вся эксплуатационная нагрузка передается на сваи, железобетонная плита подстилающего слоя толщиной 250 мм не связывается со сваями.

2. Последовательность выполнения работ

Производство работ по устройству подземной части здания выполнялось в следующей последовательности:

Этап 1. Выполнение компенсационного нагнетания цементного раствора в грунтовое основание фундаментов зданий окружающей застройки. Усиление конструкции фундаментов зданий окружающей застройки. Устройство буроинъекционых свай в основании фундаментов сохраняемой части фасада (рис. 4).

Рис. 4. Схема выполнения работ по усилению грунтового основания фундаментов существующих зданий

Рис. 4. Схема выполнения работ по усилению грунтового основания фундаментов существующих зданий

Усиленный таким образом грунтовый массив является новым техногенным образованием, обладающим высокой степенью жесткости. Методика уплотнения позволяет уплотнять не только дисперсные связанные грунты (глины, суглинки, супеси), но и несвязанные дисперсные грунты (пески, насыпные техногенные грунты). Расширение возможностей применения технологии на широком спектре грунтов происходит за счет подбора качественной характеристики раствора, обеспечивающей ее высокую проникающую способность. Наличие грунтовых вод не является противопоказанием к применению высоконапорной инъекции.

Этап 2 (рис. 5). Выполнение форшахт для устройства ограждения по периметру подземной части здания и для выполнения свай-баретт. Производство работ по устройству монолитной железобетонной плиты рабочего уровня с направляющими гильзами для устройства скважин цементации. Бурение скважин и цементация скального грунта. После цементации вдоль периметра ограждения котлована образуется слой скального грунта с достаточными противофильтрационными свойствами для разработки вертикальных траншей

Рис. 5. Этапы устройства форшахт ограждения по периметру и баретт, цементации основания и бетонирования плиты рабочего уровня

Рис. 5. Этапы устройства форшахт ограждения по периметру и баретт, цементации основания и бетонирования плиты рабочего уровня

Рис. 6. Этапы устройства ограждающей конструкции, свай-баретт и экскавации котлована

под защитой бентонитового раствора. Водопроницаемость зацементированных грунтов контролируется по величине удельного водопоглощения, установленного при гидравлическом опробовании контрольных скважин. В основании баретт формируется непрерывный пласт сплошного зацементированного скального массива с нормативным пределом прочности на одноосное сжатие — R_с≥11,0 МПа. Для контроля прочности выполняется отбор образцов и их лабораторные испытания.

Этап 3 (рис. 6). Устройство траншейной стены ограждения подземной части методом «стена в грунте» гидрофрезерным оборудованием (единичная заходка — 2800 х 640 мм) в две очереди по захваткам с заведением в водоупор (ИГЭ-10) не менее чем на один метр. Устройство замыкающих грунтобетонных элементов, выполняемых по технологии струйной цементации грунта (Jet-1), между криволинейными захватками с заведением до отметки кровли скального грунта (ИГЭ-8).

Этап 4. Устройство баретт (2800 х 640 мм) с «сердечниками» под временные и постоянные железобетонные и стальные колонны и баретт под башенный кран по технологии «стена в грунте».

Этап 5. Демонтаж форшахт и железобетонной плиты рабочего уровня. Устройство фундамента башенного крана. Срубка шламового бетона верхней части ограждения котлована на высоту 500 мм. Устройство обвязочной балки и периферийной части плиты перекрытия на отметке (-0.100) по инвентарной опалубке.

Этап 6. Поэтапная экскавация котлована до отметки -4,550 м. Демонтаж временных колонн.

Этап 7. Устройство монолитной железобетонной плиты перекрытия на отметке (-4.550) по бетонной подготовке. Устройство вертикальных несущих конструкций минус первого этажа.

Этап 8. Устройство центральной части плиты перекрытия с технологическими проемами на отметке (-0.100). Эта конструкция позволяет вести работы по устройству надземной части здания, поскольку опирается на ранее выполненные сваи баретты и не требует устройства фундаментной плиты на минус третьем уровне. Начало строительства надземной части здания без ограничения скорости производства работ и этажности.

Этап 9. Разработка грунта котлована малогабаритной техникой до отметки -8.500. Устройство монолитной железобетонной плиты перекрытия минус второго этажа на отметке -8.200.

Этап 10. Разработка грунта котлована малогабаритной техникой до отметки -12,600 м. Срубка и оформление оголовков баретт. Устройство дренажной системы по дну котлована. Устройство монолитной железобетонной плиты пола минус третьего этажа.

Этап 11. Устройство вертикальных несущих конструкций минус третьего этажа.

Этап 12. Завершение работ по устройству монолитной железобетонной плиты минус второго этажа. Устройство пандусов и лестничных маршей. Устройство внутренней вертикальной гидроизоляции и прижимной монолитной железобетонной стенки на минус третьем этаже. Для устройства монолитной прижимной стенки в перекрытиях были предусмотрены технологические гильзы-направляющие.

Этап 13. Устройство вертикальных несущих конструкций минус второго этажа. Устройство внутренней вертикальной гидроизоляции и прижимной монолитной железобетонной стенки на минус втором этаже.

Этап 14. Ликвидация временного технологического проема в железобетонной плите на отметке -0.100. Демонтаж временных колонн.

Этап 15. Демонтаж башенного крана. Демонтаж ростверка и баретт башенного крана. Устройство внутренней вертикальной гидроизоляции и прижимной монолитной железобетонной стенки на минус первом этаже. Устройство наружной вертикальной гидроизоляции стилобатной части здания и благоустройство территории.

3. Геотехнический мониторинг

В ходе геотехнического мониторинга выполнялись высокоточные геодезические измерения отметок установленных деформационных марок, оценивалась динамика развития вертикальных перемещений зданий и проводилась визуальная оценка их технического состояния. Динамика развития наиболее интенсивных вертикальных перемещений показана на рис. 7. Вертикальные перемещения остальных марок имеют меньшие значения. Относительная разница дополнительных осадок фундаментов существующих зданий также не превысила предельно допустимого уровня.

 Рис. 7. Динамика развития вертикальных перемещений деформационных марок

Рис. 7. Динамика развития вертикальных перемещений деформационных марок

О стабилизации осадок зданий окружающей застройки можно судить по изменению скорости их развития, а она имеет явную тенденцию к снижению. Это можно хорошо проследить на графике построенных по данным наблюдений. Если в начальный период наблюдения она составляла 0,1…0,15 мм/сут, то через 90 суток она составила 0,03…0,45 мм/сут, следовательно, снизилась в 2,5 …3,0 раза. Такое снижение скорости развития абсолютной величины вертикальных перемещений свидетельствует о процессе их стабилизации.

Заключение

Выбор метода производства работ up-down по устройству здания в стесненных городских условиях оказался полностью оправданным. Использованные при реализации этого метода технологии позволили выполнить работы в установленные сроки, с качеством обеспечивающим механическую безопасность как строящегося объекта, так и окружающей застройки. Производство работ хотя и является технически сложным, но при надлежащем уровне мониторинга позволяет оптимизировать сроки проведения работ. Полученный в ходе строительства опыт может быть в дальнейшем использован при проектировании и строительстве объектов такого уровня сложности.

Литература

1. Абелев М. Ю. Особенности технологии проведения работ по устройству фундаментов: Учеб. пособие / М. Ю. Абелев, Б. М. Красновский. М.: Б. и., 1980. — 45 с.

2. Абелев М. Ю. Деформации сооружений в сложных инженерно-геологических условиях. М.: ЦМИПКС при МИСИ им. В. В. Куйбышева, 1982. — 290 c.

3. Строительство зданий и сооружений в сложных грунтовых условиях / [М. Ю. Абелев, В. А. Ильичев, С. Б. Ухов и др.]; под ред. М. Ю. Абелева. М.: Стройиздат, 1986. — 104 с.

4. Абелев М. Ю., Чунюк Д. Ю, Бровко Е. И. Выправление кренов высотных промышленных и гражданских зданий // Промышленное и гражданское строительство. 2016. — № 11. — С. 54–59.

5. Катценбах Р., Шмитт А., Рамм Х. Основные принципы проектирования и мониторинга высотных зданий Франкфурта-на-Майне. Случаи из практики // Реконструкция городов и геотехническое строительство. 2005. № 9. C. 80–99.

6. Конюхов Д. С. Строительство городских подземных сооружений мелкого заложения. М.: Архитектура, 2005. — 298 с.

7. Chang-Yu Ou. Deep Excavations. Theory and Practice. London: Taylor & Francis, 2006. — 532 p.

8. Щерба В. Г., Абелев К. М., Храмов Д. В., Сагалаков Г. В., Бахронов Р. Р. Особенности обеспечения объектов строительства монолитных многоэтажных зданий в стесненных городских условиях. //Вестник МГСУ. — 2008. — № 3. С. 146–149.

9. Юркевич П. Б. Возведение монолитных железобетонных перекрытий при полузакрытом способе строительства подземных сооружений //Подземное пространство мира. — 2002. — № 1. — С. 13–22.

10. Makovetskiy O., Zuev S. Practice device artificial improvement basis of soil technologies jet grouting. Procedia Engineering. — 2016. — Vol. 165: 15th Intern. sci. conf. Underground Urbanisation as a Prerequisite for Sustainable Development 12–15 Sept. 2016, St. Petersburg, Russia. — P. 504–509.

11. Маковецкий О. А. Зуев С. С. Опыт проведения испытаний баретты большой длины в условиях плотной городской застройки // Жилищное строительство. 2018. — № 9 —С. 13–18.

Авторы статьи: 

М. Ю. АБЕЛЕВ, С. С. ЗУЕВ , Р. Р. АХМЕТШИН

Центр инновационных технологий в строительстве Института ДПО ГАСИС НИУ ВЩЭ
АО «Нью Граунд»

 

 

 




Набирая высоту. Высотное строительство подтягивает новые технологии


10.12.2019 10:28

В современном высотном строительстве активно применяются новые технологии, которые помогают ускорить работы и реализовать самые смелые архитектурные решения.


В России продолжает расти высота жилых зданий. По данным исследования ЕРЗ.РФ, проведенного совместно с Комиссией Российского союза строителей и предпринимателей по строительству и жилищной политике и Национальным объединением застройщиков жилья, на конец ноября средняя этажность возводимых жилых объектов в нашей стране составила 17,8 этажа. В сравнении с аналогичным периодом прошлого года  высотность увеличилась на 0,7 этажа.

Всего доля строящихся жилых зданий высотой от 25 этажей составляет сейчас 22,9% (в квадратных метрах). За год прирост показателя составил 3,3%. Наибольшая доля жилищного строительства приходится на дома высотой 18–24 этажа. Лидер высотного строительства – Свердловская область. Это единственный регион страны, где доля высотного строительства превышает 50%. Средняя этажность возводимого жилья составляет 22,4 этажа. Москва в рейтинге заняла только четвертое место. «Высотки» в столичном жилищном строительстве занимают 42,4% в общем объеме. Но при этом Москва лидирует по максимальной средней высотности новостроек – 23,9 этажа.

Петербург, по оценке экспертов, не входит в десятку регионов, занимая только 11-е место в рейтинге. Средняя высотность домов здесь достигает 18,1 этажа, что близко к общероссийскому значению. Высоту жилых объектов ограничивает местное законодательство. Тем не менее, у Петербурга есть своя высотная достопримечательность. Правда, не относящаяся к жилым зданиям. Высота  многофункционального комплекса «Лахта Центр» составляет 462 м. В настоящее время это самое высокое здание в регионе.

По жестким стандартам

Эксперты отмечают: в современном высотном строительстве постоянно зарождаются и развиваются новые тренды. Связаны они как с архитектурой объектов, так и с их технологической начинкой. Это касается и жилых объектов, и административных зданий. Причем применение новых технологий в проектировании, использование инновационных материалов позволяют построить «высотку» в более сжатые сроки, чем 10–15 лет назад. В частности, при возведении таких объектов применяются сверхпрочный бетон, особый вид армирования и т. д.

По словам главного инженера проектов компании «Метрополис» Дениса Дубинина, высотные здания не зря считаются уникальными: при проектировании к ним предъявляются более строгие требования из-за повышенной опасности в случае непредвиденных и нештатных ситуаций. Кроме того, эти особые правила объясняются потребностью обеспечить комфорт пребывающих в здании людей и снизить затраты на эксплуатацию объекта. Так, при проектировании высотных объектов особенно важно правильное зонирование, чтобы сократить количество перемещений людей между этажами. При этом лифтовое оборудование должно подбираться тщательно. Желательно, чтобы оно имело высокую степень автоматизации, когда система определяет наиболее выгодное использование имеющихся лифтов в определенной ситуации. Обязательными для высотных объектов являются аэродинамические испытания, чтобы определить ветровые нагрузки – зачастую они превышают сейсмическую нагрузку. Особые требования также предъявляются к системам пожаробезопасности, эвакуации людей, к молниезащите. Системы должны быть не только эффективными, но и более износостойкими, чем у обычных объектов.

«Многие высотные здания обладают обширной поверхностью или даже целиком стеклянным фасадом. Для соответствия принципам энергоэффективности такие фасады должны быть выполнены из стекла, которое обладает минимальной потерей тепла. Это необходимо для того, чтобы не создавать дополнительных нагрузок на вентиляционные и отопительные системы летом и зимой соответственно. Особые требования предъявляются и к обслуживанию фасадов. В целом для высотных объектов очень важна энергоэффективность, так как затраты на инженерные системы увеличиваются с каждым метром высоты. Для оценки принятых решений здания проходят сертификацию различных типов, например, по стандарту LEED», – подчеркивает Денис Дубинин.

Тренд энергоэффективности

Основатель проектного бюро Rumpu Евгений Богданов отмечает, что сейчас в основном строят металлокаркасные высотные здания. Такое решение позволяет увеличить скорость строительства. «Если говорить о технологиях для высоток в целом, они связаны с использованием фасадных материалов, новых систем остекления, а также инженерии, например, для вентиляции и центрального холодоснабжения. В настоящее время доступно много энергоэффективных решений, например – рекуперация, что является необходимостью в высотных зданиях, особенно с учетом того, что окна в них не открываются. Рекуперация при этом – самое энергоэффективное решение, которое дает 30% экономии тепла, самого дорогого энергоресурса в России. Такое решение должно стать нормой в любом жилищном строительстве», – считает эксперт.

Представитель ГК «Пенетрон-Россия» Ирина Лутфиева рассказывает, что обобщая опыт этой группы компаний по работе с высотными зданиями, можно отметить: для таких объектов важны локация, близость к различным водоемам, отличные виды на прилегающую местность. Как правило, это сочетается прежде всего со сложной гидрогеологией, высоким уровнем грунтовых вод. Однако современные технологии позволяют нивелировать практически полностью эти неблагоприятные условия, они в настоящее время не являются критичными. Качественная гидроизоляция позволяет решить весь комплекс задач по строительству на сложных грунтах и обеспечить сооружению безопасность и долговечность. В первую очередь – герметичность фундамента и подземных уровней, на которых, как правило, размещаются паркинги, инженерные коммуникации, лифтовые шахты и т. п. Все эти помещения нуждаются в надежной гидроизоляции.


АВТОР: Виктор Краснов
ИСТОЧНИК: СЕ_ЛО №12(111) от 09.12.2019
ИСТОЧНИК ФОТО: https://pbs.twimg.com/


Игроки рынка демонтажа рассчитывают на рост


10.12.2019 09:27

По мнению экспертов, активизировать рынок демонтажных работ можно только с помощью крупных проектов редевелопмента и реновации застроенных территорий.


Рынок демонтажных услуг, «просевший» после 2014 года вслед за всей строительной сферой, пока не восстановил свои позиции. Так считает ряд его игроков, хотя другие его представители говорят о небольшом подъеме отрасли. Также специа­листы считают, что рынок сейчас «задемпингован» из-за высокой конкуренции и присутствия на нем непрофессионалов.

Определяя показатели

По словам исполнительного директора ФГИК «Размах» Руслана Семенова, рынок демонтажа в Петербурге и Ленинградской области в последние три года показывает небольшой, но неуклонный спад как по количеству контрактов, так и по их цене. В частности, по сравнению с 2018 в 2019 году он потерял в количестве тендеров около 3%. При этом суммарная емкость рынка Петербургской агломерации по итогам текущего года составит около 2,3 млрд рублей против 2,7 млрд в прошлом.

«В дальнейшем мы не прогнозируем положительную динамику, учитывая стремительное сокращение строительного рынка и числа застройщиков как таковых. Ведь в Петербурге и Ленобласти 70% заказов приходятся на гражданский, а не промышленный демонтаж. Количество демонтажных компаний также неизбежно сократится. В последние годы мы уже наблюдаем процесс ухода с рынка многих компаний, которые на пике рынка в 2011–2012 годах могли считаться лидерами», – добавляет Руслан Семенов.

Стоит добавить, что ранее аналитический центр ГК «Размах» отмечал, что по итогам первого полугодия 2019 года емкость демонтажного рынка РФ оценивалась в 118,5 млрд рублей. При этом прирост проектов по сравнению с аналогичным периодом прошлого года составил 4%. Лидерами среди федеральных округов РФ по емкости рынка по убыванию являются ЦФО, СЗФО и ЮФО.

Между тем генеральный директор ГК «КрашМаш» Виктор Казаков охарактеризует текущее состояние рынка демонтажных услуг как позитивное. По его мнению, после кризиса 2014 года и стагнации в 2015–2016 годах спрос на данный сегмент строительной отрасли постепенно пошел вверх и в настоящий момент показывает хорошую динамику роста.

«Все это отражается как в количестве, так и в качестве заказов. Причем под качеством я подразумеваю не только объемы, но и комплексность. В числе последних таких объектов, где был проведен полный или частичный демонтаж, – Ховринская больница, гостиница «Спутник» и «Люблинский ЛМЗ» в Москве, нефтехимический комбинат «Сибур» в Тобольске, «Выксунский металлургический завод» в Выксе Нижегородской области, химпредприятие «НАК АЗОТ» в Новомосковске и многие другие объекты», – перечислил он.

С перспективой на будущее

Эксперты предполагают, что именно крупные и комплексные проекты редевелопмента и реновация застроенных территорий помогут существенно активизировать демонтажный рынок в стране. Также на руку игрокам отрасли может сыграть реализация регионами национальных проектов, связанных с жилищным строительством.

Как отмечает генеральный директор ООО «ЕвроТрансСтрой» Сергей Ракчеев, рынок демонтажа в России – очень перспективное направление. С одной стороны, в стране растет доля изношенности основных фондов промышленных предприятий, с другой – требуются площадки для возведения новых строительных объектов. Поэтому основным драйвером роста рынка в ближайшие годы будет потребность в модернизации индустриальных объектов и сносе аварийного жилья. Сейчас много аварийных объектов находится в Центральном, Приволжском, Северо-Западном, Сибирском и Дальневосточном федеральных округах.

«Также имеет перспективы связанный с демонтажом рециклинг строительных отходов. Сейчас доля строительных отходов, использованных в качестве вторсырья, в РФ составляет не более 30%. При этом в Германии, Нидерландах, Франции такие отходы практически полностью востребованы при строительстве новых объектов», – рассказывает эксперт.

Стоит отметить, что рециклингом некоторые ведущие российские демонтажные компании занимаются давно. Однако для них это был почти всегда вторичный бизнес, не приносящий серьезных доходов. Сейчас переработка строительных отходов для ряда игроков рынка стала одним из основных видов деятельности. Они работают не только с остаточным материалом с площадок, где провели демонтаж, но принимают его и от сторонних организаций. В частности, востребована услуга по преобразованию бетона, железобетона, кирпича во вторичный щебень. Он активно задействуется в дорожном строи­тельстве.

К сожалению, подчеркивают специа­листы, в настоящее время на демонтажном рынке остаются откровенно слабые, а иногда и непрофессиональные игроки. Как правило, они занимаются небольшими проектами, но иногда претендуют и на крупные заказы – с помощью демпинга. Не имея в своем штате необходимого числа специалистов и техники, они могут сорвать заказ, не справиться с ним по срокам или провести работы некачественно.

По словам Виктора Казакова, за последние несколько лет серьезные игроки рынка стали еще более крупными, опытными и технически оснащенными. А вот мелкие «однодневки» таковыми и остались. В любом случае, резюмирует он, выбор всегда остается за заказчиком, а его предпочтения между качеством и ценой в последнее время все больше склоняются к первому.

Мнение

Виктор Казаков, генеральный директор ГК «КрашМаш»:

– Очень важно, что за последние годы возросла техническая грамотность и самих заказчиков. Это отображается и в качестве проработки технических заданий по демонтажу объекта, и в объективном понимании сложности процесса и реальных сроков реализации, и в самом подходе к выбору подрядчика: высокие требования к уровню охраны труда и безопасности производства работ.


АВТОР: Артём Аладанов
ИСТОЧНИК: СЕ_ЛО №12(111) от 09.12.2019
ИСТОЧНИК ФОТО: Никита Крючков