Опыт одновременного строительства подземной и надземной частей здания методом up-doun

В условиях плотной городской застройки, а также дефицита свободных участков подземное строительство приобретает особую актуальность, однако местная специфика и гидрогеологические условия делают задачу возведения подземных объектов очень непростой. Это стимулирует инженеров использовать новые методы, которые обеспечивают безопасную эксплуатацию окружающей застройки, позволяют проводить подземные работы практически на любой глубине даже в самых сложных инженерных и геологических условиях. Одним из таких является метод up-down, или «вверх-вниз». Такой способ позволяет на нулевой отметке выполнить перекрытие и продолжить строительство одновременно как вверх, так и вниз. Данная технология является актуальной в современных условиях строительства, так как позволяет возводить здания с меньшим задействованием близлежащих территорий. В статье описан принцип технологии up-down, представлен порядок производства работ, рассмотрены основные преимущества и недостатки данного метода, приведены результаты геотехнического мониторинга окружающей застройки.
Основной областью применения метода up-down является устройство глубоких котлованов в пределах плотной городской застройки. Обычно этот метод используется при невозможности выполнения грунтовых анкеров вследствие стесненных условий и существующей развитой подземной части на соседних участках [1–7]. Кроме того, этот метод используется при малых допустимых деформациях окружающих зданий и сооружений. Явным преимуществом метода up-down является высокий темп строительства при устройстве высотной части (рис. 1).
Рис. 1. Схема производства работ по методу up-down
При многих преимуществах этого метода строительства он в большинстве случаев ведет к удорожанию строительного производства по сравнению со строительством в открытом котловане. Особую сложность представляет собой организация снабжения и логистики при подобном виде работ [8]. Следует отметить, что устройство подземной части по методу «вверх-вниз» требует высокой квалификации подрядчика и детальной проектной проработки [9].
Для производства работ по устройству подземной части при данном методе строительства используется технологии «стена в грунте» и струйная цементация грунта (Jet-grouting). Проектирование конфигурации стены выполняется с учетом особенностей технологического оборудования (гидрофрезы). В ходе подготовительных работ по контуру будущей ограждающей конструкции выполняется форшахта шириной 60…80 см и глубиной до 3,0 м. Стенки форшахты раскрепляются железобетонными монолитными конструкциями.
Разработка грунта в траншее и бетонирование выполняются под защитой глиняного тиксотропного раствора, приготовляемого из бентонитовой глины, что обеспечивает устойчивость стенок траншеи от обрушения. Параметры раствора корректируются при производстве работ на опытном участке.
Укладка бетонной смеси панелей ограждающей конструкции производится методом вертикального подъема трубы. Бетонирование стен под защитой глиняного раствора должно выполняться не позднее чем через 8 часов после образования траншеи в захватке. Бетонирование одной захватки проводится непрерывно на всю высоту. Между захватками выполняется холодный рабочий шов, а армирование захватки — сборными пространственными арматурными каркасами. Глубина ограждающей конструкции по данной технологии может достигать 25…30 м.
По грунтовым условиям «стена в грунте» может применяться в любых дисперсных грунтах.
При устройстве больших котлованов, внутри которых возводится здание или сооружение, ограждающие конструкции, выполненные методом «стена в грунте», используют как внешние стены подземной части. В этом случае нагрузка от здания передается на фундаменты, не связанные с ограждающими стенами.
При необходимости ограждающие конструкции, устраиваемые методом «стена в грунте», могут выполнять двойную функцию: являются и ограждением котлована, и конструктивным элементом.
Современные технологии позволяют устраивать конструкции подземных сооружений разных форм, но традиционные и наиболее часто встречающиеся — конструкции из прямолинейных стенок.
При наличии грунтов, содержащих твердые включения природного или техногенного происхождения (крупные валуны, обломки бетонных конструкций, каменной кладки и др.), при проходке траншеи используется техника, оснащенная фрезерным оборудованием, например, фирм «Бауэр», «Касагранде».
Использование грейферного оборудования, которым крупные включения извлекаются, может привести к деформированию стенки траншеи, падению уровня тиксотропного раствора и деформациям окружающего массива и близ расположенных зданий.
Для надежного уплотнения проблемных стыков между панелями траншейных стен, как показал опыт строительства, успешно может быть применена технология струйной цементации jet-grouting. Она заключается в разрушении и перемешивании грунта мощнонапорной струей цементного раствора, исходящего под высоким давлением из монитора, расположенного на нижнем конце буровой колонны. В результате в грунтовом массиве формируются сваи диаметром 0,6–1,5 м из нового материала — грунтобетона с достаточно высокими несущими и противофильтрационными характеристиками. При этом цементационные работы могут выполняться как снаружи ограждающих котлован стен, так и изнутри котлована до его разработки. С этой целью в зависимости от прогнозируемой величины раскрытия стыков с глубиной могут быть применены неармируемые или армируемые металлическими трубами грунтоцементные колонны диаметром 60 или 80 см.
Для разработки грунтового ядра внутри подземного сооружения, возводимого способом «стена в грунте», рекомендуется применять технологию, которая предусматривает разработку вначале центральной части грунтового массива на глубину одного яруса с сохранением по периферии нетронутых участков. Такой прием облегчает работу ограждающей конструкции. Затем монтируются распорные конструкции, и разрабатывается оставшаяся часть грунта. Одним из существенных преимуществ данных технологий является возможность устройства как отдельных, так и протяженных подземных конструкций с поверхности земли без экскавации котлована [10].
Производство работ по методу up-down считается одним из самых сложных видов строительного производства с геотехнической точки зрения и предусматривает комплексную программу мониторинга в период строительства здания [11].
- Характеристика объекта строительства
Рассматриваемая площадка строительства обладает практически всеми перечисленными осложняющими факторами:
Инженерно-геологические и гидрогеологические условия.
В геологическом строении площадки принимают участие следующие элементы (рис. 2): ИГЭ-1. Современные техногенные отложения, песчано-суглинистые грунты со щебнем кирпича. ИГЭ-2. Глина мягкопластичной консистенции. ИГЭ-3. Суглинки мягкопластичной и тугопластичной консистенции. ИГЭ-4. Супеси пластичные. ИГЭ-5. Пески пылеватые, средней плотности, водонасыщенные. ИГЭ-6. Пески мелкие, средней плотности, водонасыщенные. ИГЭ-7. Пески средней крупности, средней плотности, водонасыщенные. ИГЭ-8.1. Глина полутвердая. ИГЭ-8. Мергель малопрочный. ИГЭ-9.1. Известняк, разрушенный до щебня и дресвы. ИГЭ-9. Известняк малопрочный. ИГЭ-10. Глина полутвердая.
Подземная вода встречена на глубине 3,7…4,0 м от поверхности.
В представленных инженерно-геологических условиях, при наличии в основании значительной толщи слабых грунтов и высоком уровне грунтовых вод, основным требованием к ограждающей конструкции котлована является обеспечение минимального поступления воды в котлован и ограничение дополнительных вертикальных перемещений окружающей застройки. Для определения зданий и сооружений, на которые возможно влияние от строительства проектируемого, предварительно назначается 30-метровая зона, которая впоследствии уточняется расчетами. Выполняется обследование зданий, определяется история их строительства, техническое состояние основных конструктивных элементов. Величина допустимого влияния определяется исходя из условия обеспечения надежности здания и зависит от его технического состояния и конструктивной схемы.
Рис. 2. Инженерно-геологический разрез площадки строительства
Градостроительная и геотехническая ситуация.
Строящееся здание возводится в существующем квартале исторической застройки на месте демонтированного здания. При этом по градостроительным условиям было необходимо сохранить исторический фасад здания, выходящий на улицу. В зону влияния строительства попадают 15 зданий, техническое состояние зданий по результатам обследования оценено как удовлетворительное, предельные дополнительные осадки этих зданий ограничены диапазоном 10…30 мм. Для обеспечения сохранности и механической безопасности зданий при производстве работ по строительству здания и в ходе его эксплуатации необходимо было выполнить комплекс работ по улучшению механических свойств грунтовых оснований (метод компенсационного нагнетания цементного раствора) и усилению конструкции фундаментов. На всех этапах производства работ был организован мониторинг за развитием вертикальных перемещений и техническим состоянием основных конструкций зданий. Схема расположения наблюдательных марок приведена на рис. 3.
Рис. 3. Схема размещения наблюдательных марок (вертикальные перемещения)
Характеристика строящегося здания.
Здание монолитное, железобетонное, с максимальной отметкой верха 34,10 м, прямоугольной формы в плане, состоящее из 6-этажной надземной части и 3-этажной подземной части (гаража). Несущие конструкции — продольные и поперечные монолитные железобетонные стены и колонны. Максимальная глубина котлована 12,60 м. Способ разработки котлована up-down: заглубление под защитой дисков плит перекрытий с возможностью одновременного строительства вверх. Конструкция ограждения котлована: траншейная стена толщиной 640 мм, выполняемая гидрофрезерным оборудованием (базовая машина BAUER BG-28 с гидрофрезой BC-32). Фундамент — свайное поле со сваями-бареттами, опирающимися на однородный скальный грунт (известняки). Вся эксплуатационная нагрузка передается на сваи, железобетонная плита подстилающего слоя толщиной 250 мм не связывается со сваями.
2. Последовательность выполнения работ
Производство работ по устройству подземной части здания выполнялось в следующей последовательности:
Этап 1. Выполнение компенсационного нагнетания цементного раствора в грунтовое основание фундаментов зданий окружающей застройки. Усиление конструкции фундаментов зданий окружающей застройки. Устройство буроинъекционых свай в основании фундаментов сохраняемой части фасада (рис. 4).
Рис. 4. Схема выполнения работ по усилению грунтового основания фундаментов существующих зданий
Усиленный таким образом грунтовый массив является новым техногенным образованием, обладающим высокой степенью жесткости. Методика уплотнения позволяет уплотнять не только дисперсные связанные грунты (глины, суглинки, супеси), но и несвязанные дисперсные грунты (пески, насыпные техногенные грунты). Расширение возможностей применения технологии на широком спектре грунтов происходит за счет подбора качественной характеристики раствора, обеспечивающей ее высокую проникающую способность. Наличие грунтовых вод не является противопоказанием к применению высоконапорной инъекции.
Этап 2 (рис. 5). Выполнение форшахт для устройства ограждения по периметру подземной части здания и для выполнения свай-баретт. Производство работ по устройству монолитной железобетонной плиты рабочего уровня с направляющими гильзами для устройства скважин цементации. Бурение скважин и цементация скального грунта. После цементации вдоль периметра ограждения котлована образуется слой скального грунта с достаточными противофильтрационными свойствами для разработки вертикальных траншей
Рис. 5. Этапы устройства форшахт ограждения по периметру и баретт, цементации основания и бетонирования плиты рабочего уровня
Рис. 6. Этапы устройства ограждающей конструкции, свай-баретт и экскавации котлована
под защитой бентонитового раствора. Водопроницаемость зацементированных грунтов контролируется по величине удельного водопоглощения, установленного при гидравлическом опробовании контрольных скважин. В основании баретт формируется непрерывный пласт сплошного зацементированного скального массива с нормативным пределом прочности на одноосное сжатие — R_с≥11,0 МПа. Для контроля прочности выполняется отбор образцов и их лабораторные испытания.
Этап 3 (рис. 6). Устройство траншейной стены ограждения подземной части методом «стена в грунте» гидрофрезерным оборудованием (единичная заходка — 2800 х 640 мм) в две очереди по захваткам с заведением в водоупор (ИГЭ-10) не менее чем на один метр. Устройство замыкающих грунтобетонных элементов, выполняемых по технологии струйной цементации грунта (Jet-1), между криволинейными захватками с заведением до отметки кровли скального грунта (ИГЭ-8).
Этап 4. Устройство баретт (2800 х 640 мм) с «сердечниками» под временные и постоянные железобетонные и стальные колонны и баретт под башенный кран по технологии «стена в грунте».
Этап 5. Демонтаж форшахт и железобетонной плиты рабочего уровня. Устройство фундамента башенного крана. Срубка шламового бетона верхней части ограждения котлована на высоту 500 мм. Устройство обвязочной балки и периферийной части плиты перекрытия на отметке (-0.100) по инвентарной опалубке.
Этап 6. Поэтапная экскавация котлована до отметки -4,550 м. Демонтаж временных колонн.
Этап 7. Устройство монолитной железобетонной плиты перекрытия на отметке (-4.550) по бетонной подготовке. Устройство вертикальных несущих конструкций минус первого этажа.
Этап 8. Устройство центральной части плиты перекрытия с технологическими проемами на отметке (-0.100). Эта конструкция позволяет вести работы по устройству надземной части здания, поскольку опирается на ранее выполненные сваи баретты и не требует устройства фундаментной плиты на минус третьем уровне. Начало строительства надземной части здания без ограничения скорости производства работ и этажности.
Этап 9. Разработка грунта котлована малогабаритной техникой до отметки -8.500. Устройство монолитной железобетонной плиты перекрытия минус второго этажа на отметке -8.200.
Этап 10. Разработка грунта котлована малогабаритной техникой до отметки -12,600 м. Срубка и оформление оголовков баретт. Устройство дренажной системы по дну котлована. Устройство монолитной железобетонной плиты пола минус третьего этажа.
Этап 11. Устройство вертикальных несущих конструкций минус третьего этажа.
Этап 12. Завершение работ по устройству монолитной железобетонной плиты минус второго этажа. Устройство пандусов и лестничных маршей. Устройство внутренней вертикальной гидроизоляции и прижимной монолитной железобетонной стенки на минус третьем этаже. Для устройства монолитной прижимной стенки в перекрытиях были предусмотрены технологические гильзы-направляющие.
Этап 13. Устройство вертикальных несущих конструкций минус второго этажа. Устройство внутренней вертикальной гидроизоляции и прижимной монолитной железобетонной стенки на минус втором этаже.
Этап 14. Ликвидация временного технологического проема в железобетонной плите на отметке -0.100. Демонтаж временных колонн.
Этап 15. Демонтаж башенного крана. Демонтаж ростверка и баретт башенного крана. Устройство внутренней вертикальной гидроизоляции и прижимной монолитной железобетонной стенки на минус первом этаже. Устройство наружной вертикальной гидроизоляции стилобатной части здания и благоустройство территории.
3. Геотехнический мониторинг
В ходе геотехнического мониторинга выполнялись высокоточные геодезические измерения отметок установленных деформационных марок, оценивалась динамика развития вертикальных перемещений зданий и проводилась визуальная оценка их технического состояния. Динамика развития наиболее интенсивных вертикальных перемещений показана на рис. 7. Вертикальные перемещения остальных марок имеют меньшие значения. Относительная разница дополнительных осадок фундаментов существующих зданий также не превысила предельно допустимого уровня.
Рис. 7. Динамика развития вертикальных перемещений деформационных марок
О стабилизации осадок зданий окружающей застройки можно судить по изменению скорости их развития, а она имеет явную тенденцию к снижению. Это можно хорошо проследить на графике построенных по данным наблюдений. Если в начальный период наблюдения она составляла 0,1…0,15 мм/сут, то через 90 суток она составила 0,03…0,45 мм/сут, следовательно, снизилась в 2,5 …3,0 раза. Такое снижение скорости развития абсолютной величины вертикальных перемещений свидетельствует о процессе их стабилизации.
Заключение
Выбор метода производства работ up-down по устройству здания в стесненных городских условиях оказался полностью оправданным. Использованные при реализации этого метода технологии позволили выполнить работы в установленные сроки, с качеством обеспечивающим механическую безопасность как строящегося объекта, так и окружающей застройки. Производство работ хотя и является технически сложным, но при надлежащем уровне мониторинга позволяет оптимизировать сроки проведения работ. Полученный в ходе строительства опыт может быть в дальнейшем использован при проектировании и строительстве объектов такого уровня сложности.
Литература
1. Абелев М. Ю. Особенности технологии проведения работ по устройству фундаментов: Учеб. пособие / М. Ю. Абелев, Б. М. Красновский. М.: Б. и., 1980. — 45 с.
2. Абелев М. Ю. Деформации сооружений в сложных инженерно-геологических условиях. М.: ЦМИПКС при МИСИ им. В. В. Куйбышева, 1982. — 290 c.
3. Строительство зданий и сооружений в сложных грунтовых условиях / [М. Ю. Абелев, В. А. Ильичев, С. Б. Ухов и др.]; под ред. М. Ю. Абелева. М.: Стройиздат, 1986. — 104 с.
4. Абелев М. Ю., Чунюк Д. Ю, Бровко Е. И. Выправление кренов высотных промышленных и гражданских зданий // Промышленное и гражданское строительство. 2016. — № 11. — С. 54–59.
5. Катценбах Р., Шмитт А., Рамм Х. Основные принципы проектирования и мониторинга высотных зданий Франкфурта-на-Майне. Случаи из практики // Реконструкция городов и геотехническое строительство. 2005. № 9. C. 80–99.
6. Конюхов Д. С. Строительство городских подземных сооружений мелкого заложения. М.: Архитектура, 2005. — 298 с.
7. Chang-Yu Ou. Deep Excavations. Theory and Practice. London: Taylor & Francis, 2006. — 532 p.
8. Щерба В. Г., Абелев К. М., Храмов Д. В., Сагалаков Г. В., Бахронов Р. Р. Особенности обеспечения объектов строительства монолитных многоэтажных зданий в стесненных городских условиях. //Вестник МГСУ. — 2008. — № 3. С. 146–149.
9. Юркевич П. Б. Возведение монолитных железобетонных перекрытий при полузакрытом способе строительства подземных сооружений //Подземное пространство мира. — 2002. — № 1. — С. 13–22.
10. Makovetskiy O., Zuev S. Practice device artificial improvement basis of soil technologies jet grouting. Procedia Engineering. — 2016. — Vol. 165: 15th Intern. sci. conf. Underground Urbanisation as a Prerequisite for Sustainable Development 12–15 Sept. 2016, St. Petersburg, Russia. — P. 504–509.
11. Маковецкий О. А. Зуев С. С. Опыт проведения испытаний баретты большой длины в условиях плотной городской застройки // Жилищное строительство. 2018. — № 9 —С. 13–18.
Авторы статьи:
М. Ю. АБЕЛЕВ, С. С. ЗУЕВ , Р. Р. АХМЕТШИН
Центр инновационных технологий в строительстве Института ДПО ГАСИС НИУ ВЩЭ
АО «Нью Граунд»
Тепло в частном формате. Особенности теплоснабжения индивидуальных домов

Современные технологии предлагают немало различных систем теплоснабжения индивидуальных домов. Выбор оптимальной зависит от конкретной ситуации.
Рынок загородной недвижимости растет. Граждане все чаще выбирают постоянным или регулярным местом проживания индивидуальный дом, который находится вне шумного мегаполиса. Комфортное нахождение в нем во многом зависит от выбора вида теплоснабжения. От правильно подобранной системы отопления зависит не только долговечность объекта недвижимости, но и расходы на его эксплуатацию.
Сделать выбор
По источнику тепла отопление частных домов можно разделить на три вида. Первый и наиболее простой – печной. Несмотря на относительный примитивизм, он еще достаточно распространен, но задействуется, как правило, в дачных домах. Второй вид отопления – газовый. Подогрев воды через теплообменник, а затем в радиаторе или других конструкциях происходит с помощью газового котла. Третий вариант – с помощью электричества.
По словам главного инженера компании «Загородные монтажные системы» Владимира Никифорова, выбор между газовым и электрическим теплоснабжением загородных домов непрост. Предварительно необходимо учесть все нюансы местоположения объекта недвижимости, его площадь, состояние коммуникаций и т. д.
«Газовое теплоснабжение дешевле электрического в 2–4 раза. Но это при условии, что рядом проходит газовая магистраль и есть возможность подключения. Альтернатива централизованному газовому отоплению – газгольдер. Но его стоимость достаточна высока, а установка – сложна. Электрические котлы более просты в монтаже и дальнейшей эксплуатации. Полностью исключается возможность отравления угарным газом. Кроме того, большинство электрических котлов более компактны», – говорит он.
В целом, по словам эксперта, газовое отопление рекомендовано для домов площадью от 120 кв. м. «Получается существенная экономическая выгода. Кстати, в настоящее время появляются комбинированные газоэлектрические котлы, но пока они маломощны. В перспективе можно ожидать, что их технологические возможности будут расширяться – и это оборудование будет более широко представлено на рынке», – считает Владимир Никифоров.
Быть в тренде
Сами системы теплоснабжения можно поделить на водяные и электрические. За последние годы в сегменте появилось много новинок, хотя некоторые собственники предпочитают классические – привычные радиаторы отопления.
Как отмечают представители компании REHAU, сейчас в России существует огромное количество дорогих домов, в которых нет вентиляции, повышенная влажность или наоборот – постоянно пересушенный воздух. Обычно это следствие экономии на инженерных системах, непонимания принципа их работы или боязни использовать новые технологии – более эффективные, но пока не слишком привычные для определенных категорий потребителей.
В частности, добавляют специалисты, отопление радиаторами – хорошо знакомый способ, сравнительно дешевый и с использованием понятного оборудования. Неудивительно, что в большинстве случаев предпочтение отдается именно ему. Однако эта технология имеет несколько весьма серьезных недостатков, и главный из них – неравномерный прогрев помещения (когда тепло от радиатора нагревает близлежащую зону и частично уходит наружу, при этом в противоположной стороне комнаты по-прежнему холодно). Кроме того, исходящие от радиатора потоки теплого воздуха поднимают с пола и предметов мебели пыль, что не лучшим образом сказывается на качестве микроклимата, а значит, и на самочувствии жильцов.
Поэтому, как отмечает генеральный директор АО «Фирма Изотерм» Виктория Нестерова, все более широкое применение в частном домостроении получают низкотемпературные системы отопления – в частности, конвекторы. Они идеально вписываются в современную архитектурную концепцию, предусматривающую большие окна и панорамное остекление.
«Также у конвекторов есть еще ряд преимуществ. Они универсальны, подходят и к однотрубной, и к двухтрубной системе отопления. Не только обогревают помещение, но и способствуют экранированию холодного воздуха от окон, предотвращают запотевание, образование конденсата и обледенение. Кроме того, конвекторы энергоэффективны. В частности, имеют малый объем теплоносителя (в 8 раз меньше, чем у радиатора), делаются из материалов с высокой теплопроводностью (медь, алюминий)», – говорит эксперт.
По ее словам, можно легко подобрать такие системы отопления под любые помещения, в том числе с нестандартной планировкой, включая влажные: бассейны, бани, теплицы, зимние сады. «Конвекторы безопасны в эксплуатации, температура их наружных поверхностей не превышает 43 °С. Есть возможности интеграции приборов с системой “умный дом”», – добавляет Виктория Нестерова.
Тепло снизу
В загородных домах также все чаще задействуют теплые полы. Как и конвекторы, они могут быть водяными или электрическими. Первые дешевле вторых, но сложнее в монтаже и обслуживании. В случае протечки водяного пола требуется полный демонтаж покрытия. Электрический теплый пол «ест» больше энергии. В помещениях с повышенной влажностью для данных систем отопления требуется более серьезная защита элементов конструкции.
В настоящее время в самостоятельный сегмент выделяют инфракрасные теплые полы. Они все активнее используются в загородных домах. По словам руководителя интернет-магазина климатической техники Sogreto Константина Колесова, инфракрасный пол обладает массой достоинств, а именно: не пересушивает воздух, ионизирует его, нейтрализует неприятные запахи. Его легко монтировать (в частности, самостоятельно). «Пленочный инфракрасный теплый пол предназначен для монтажа под ламинат, линолеум, ковролин. Благодаря небольшой толщине пленка никак не влияет на уровень пола в квартире. Кроме того, пленочный пол под ламинат имеет самый низкий уровень энергопотребления», – рассказывает он.
Также на рынке есть стержневой инфракрасный теплый пол. Его кладут под кафель и керамогранит. «В целом приобретение конвекторных климатических комплексов, инфракрасных обогревателей (как и монтаж теплых полов) обусловлено как раз поиском функциональных обогревающих устройств. Стоит добавить, что сейчас также растет спрос на биокамины, электрические камины с 3D-эффектом живого пламени. Однако практические функции обогрева помещения в этом случае рассматриваются во вторую очередь. Установка таких устройств имеет прежде всего декоративное значение, как признак благосостояния», – добавил Константин Колесов.
Мнение
Виктория Нестерова, генеральный директор АО «Фирма Изотерм»:
– Конвекторы поставляются на объекты готовыми для подключения к системам водоснабжения, а также к электрическим сетям, что упрощает и ускоряет монтаж оборудования, который выполняют специалисты. Они же дают гарантию на выполненные работы. В частности, установку внутрипольного конвектора следует учитывать на стадии проектирования, так как монтаж имеет свою специфику – в стяжке пола необходимо подготовить специальные углубления, как для прибора, так и для трубопроводов. Но даже если это не соблюдено, есть линейка приборов высотой 8 см, что позволяет в данном случае установить внутрипольный конвектор. Стоит также добавить, что в целом конвекторы просты в эксплуатации. Их необходимо очищать от пыли перед началом и в течение отопительного сезона, не допускать замораживания теплоносителя, так как это может привести к выходу из строя теплообменника. Также не рекомендуется устанавливать в одном контуре отопления приборы отопления, изготовленные из меди и алюминия, – для предотвращения гальванической коррозии. Средний срок службы конвекторов – не менее 50 лет при условии соблюдения требований эксплуатации.
От простого к сложному. Современные гидроизоляционные рулонные материалы завоевывают рынок

Современные кровельные и гидроизоляционные рулонные материалы на основе полимеров продолжают вытеснять с рынка технологически более простую продукцию.
По данным экспертов, в настоящее время продолжает наблюдаться спад производства и потребления битумных кровельных и гидроизоляционных материалов. Этот тренд на рынке сохраняется с 2014 года. Также, если говорить о скатной крыше, в серьезный минус ушли шифер и черепица.
Наиболее типичным кровельным рулонным материалом является рубероид. В его основу входит спрессованный картон со специальной пропиткой и нанесенной на обе стороны полотна смесью покровного битума и посыпки. За счет своих характеристик продукт универсален. Также преимуществом рубероида является его низкая цена, по сравнению с другими рулонными кровельными и гидроизоляционными материалами. Тем не менее востребованность его на рынке падает.
Как отмечают в корпорации ТЕХНОНИКОЛЬ, спрос на рубероид в ближайшие пять лет может снизиться до 19% в общей структуре спроса на рулонные материалы. При этом доля продукции современного типа за этот период времени достигнет показателя 73%. Половина данных материалов будет изготавливаться на битумно-полимерной смеси, обеспечивающей высокие эксплуатационные свойства.
По словам заместителя директора по маркетингу компании «Стройкомплект» Алексея Афонина, в настоящее время строительные подрядные организации все чаще делают выбор в пользу усовершенствованных кровельных и гидроизоляционных покрытий. «Их эксплуатационные характеристики гораздо выше, чем у обычных материалов. В частности, если говорить о сроке службы битумно-полимерных покрытий, то они достигают 25 лет. Это в три раза больше, чем у битумных материалов. Таким образом, в перспективе достигается экономия средств на дальнейшем ремонте кровли. В настоящее время наиболее востребованы у строительных компаний, которые являются нашими клиентами, «дышащие» битумно-полимерные материалы. Они имеют специальные воздушные каналы, которые помогают удалять влагу между прослойками покрытия и повысить срок службы изделий», – добавил он.
В более массовом сегменте DIY-торговли также наблюдается переход на использование более технологичных материалов. Руководитель направления в категории «Строительные материалы» торговой сети «Леруа Мерлен» Илья Поляков отметил, что сейчас идет «перетекание» клиентов с товаров первого уровня качества, к которым относится рубероид, на второй – на основе стеклохолста ХПП (холст, полимерная пленка, полимерная пленка) и ХКП (холст, крупнозернистая посыпка, полимерная пленка). Также набирают популярность товары третьего уровня качества на основе полиэфира ЭКП (полиэстер, крупнозернистая посыпка, полимерная пленка) и ЭПП (полиэстер, полимерная пленка). «Если вы посмотрите вокруг, то сейчас практически 90% новых зданий имеют плоскую крышу. Эти кровельные материалы предназначены в первую очередь для таких сооружений. Соответственно, и рынок этой продукции будет расти», – уверен специалист.
Стоит добавить, что в коттеджном строительстве в настоящее время наблюдается тренд на плоские кровли с применением в качестве сплошной гидроизоляции рулонных полимерных мембран (ПМ). Срок их эксплуатации достигает 60 лет. Они устойчивы к биологическому воздействию и сильному гидровоздействию. В частности, над ПМ-покрытием на крыше можно создать газон или бассейн. Правда, в сравнении с битумными и битумно-полимерными материалами данный продукт существенно дороже и пока менее распространен в строительстве.
Кстати
С 1 июля 2020 года вступит в силу ГОСТ Р 58796-2020 «Материалы пароизоляционные рулонные битумосодержащие. Общие технические условия». Разработан он был Национальным кровельным союзом на основе европейских стандартов. Новый ГОСТ определяет характеристики таких материалов, используемых в качестве пароизоляционного слоя для изоляции от водяного пара. Также документ содержит положения, касающиеся проведения испытаний и оценки соответствия материалов установленным требованиям.