Главгосэкспертиза разработала сметные нормы на восстановление мраморных фасадов
Главгосэкспертиза России завершила разработку сметных норм на ремонт мраморной облицовки стен. Площадкой для хронометражных измерений технологических процессов стало здание Президиума Российской академии наук на Ленинском проспекте в Москве.
К разработке сметных норм на капитальный ремонт Главгосэкспертиза приступила в мае 2025 года по поручению Минстроя России.
Инициатором предложения разработки нормативов на восстановление облицовки из мрамора выступила публично-правовая компания «Единый заказчик в сфере строительства», которая с 2024 года проводит масштабный капитальный ремонт комплекса зданий Президиума Российской академии наук. В задачи проекта в том числе входит сохранение элементов фасадов и стилобатной части, включая отделку из мрамора.
Капитальный ремонт в главном здании РАН на Ленинском проспекте проводится впервые с момента ввода в эксплуатацию в 1990-х годах. Также впервые разрабатываются и сметные нормы на восстановление облицовки из мрамора.
Это необходимо для того, чтобы более точно учитывать затраты на подобные работы не только в здании Академии, но и на других объектах по всей территории страны.
Мрамор, несмотря на прочность и долговечность, со временем подвергается воздействию окружающей среды. Наряду с интенсивной эксплуатацией общественного здания это приводит к появлению дефектов на поверхности облицовочных материалов. К таким дефектам относятся трещины, царапины, сколы, накопление пыли, грязи и солевых образований.
«Все это требует проведения комплекса мер по восстановлению мраморных покрытий и, соответственно, точных параметров сметных норм на каждую технологическую операцию для их корректного учета в сметной стоимости», - рассказала Анна Кулагина, начальник отдела разработки сметных норм на работы по капитальному ремонту Управления сметного нормирования Главгосэкспертизы России.
Задача специалистов Учреждения на площадке РАН состояла в том, чтобы зафиксировать затраты при выполнении порядка десяти видов операций по восстановлению облицовки стен из мрамора. В частности, таких как очистка поверхности от загрязнений вручную, а также снятие рыхлого слоя, шлифовка, лощение и полировка облицовки механизированным способом. Хронометражные наблюдения также коснулись процессов кристаллизации облицовки, восстановления швов и фаски, а также гидрофобизации и других технологий обработки и восстановления мрамора.
Инженеры Санкт-Петербургского политехнического университета Петра Великого разработали конструкцию облегченной буроопускной сваи из стеклопластика со сниженной материалоемкостью, а также создали адаптивную цифровую модель, позволяющую прогнозировать ее поведение в многолетнемерзлых грунтах. Разработка имеет большой потенциал внедрения при строительстве инфраструктуры в Арктике. Работы осуществлялись при поддержке федеральной программы «Приоритет-2030».
Строительство на территориях распространения многолетнемерзлых грунтов (ММГ) сопряжено с высокими рисками деформаций и разрушений фундаментов из-за сложных геокриологических условий и изменения климата. Широко применяемые сегодня традиционные решения имеют высокую стоимость и при этом недостаточно надежны и адаптивны к неоднородным грунтам, что особенно критично для развития инфраструктуры в Арктической зоне.
Исследователи Научно-технологического комплекса «Новые технологии и материалы» Института машиностроения, материалов и транспорта СПбПУ создали конструкцию буроопускной сваи из стеклопластика, применив оригинальную технологию изготовления макетов. Она заключается в особом способе намотки армирующего материала. Все это позволило снизить вес конструкции сваи более чем на 6%, а материалоемкость – на 5% при одновременном росте несущей способности по сравнению с традиционными решениями.
Кроме того, инженеры разработали адаптивную цифровую модель взаимодействия сваи с многолетнемерзлыми грунтами. Такая модель способна прогнозировать поведение сваи в ММГ грунте с точностью до 95%. Технология объединяет стендовые испытания (которые проводятся в Якутске) и цифровое моделирование, позволяя оперативно подбирать оптимальные параметры свай под нестандартные и разнородные грунтовые условия.
Как отметил инженер-исследователь НТК «Новые технологии и материалы» Иван Карпов, работа над проектом потребовала нестандартного синтеза материаловедения и цифрового инжиниринга.
«Нам удалось не просто создать более легкую и прочную сваю, а сформировать целостную технологию – от виртуального проектирования до стендовых испытаний, адаптированную под экстремальные условия Арктики. Это результат, который делает строительство на вечной мерзлоте не только более надежным, но и экономически оправданным» – прокомментировал он результаты работы.
Разработка «политехников» позволяет снизить общие затраты на возведение фундаментов в условиях многолетнемерзлых грунтов до 10% за счет использования полимерных материалов, новой конструкции сваи, а также ускорения проектирования с помощью цифровой модели. Повышенная надежность фундаментов снижает риски аварий и дорогостоящих ремонтов, обеспечивая долгосрочную устойчивость объектов инфраструктуры, что особенно актуально для территорий Крайнего Севера. Новая технология может быть востребована в нефтегазовой отрасли, энергетике и жилищном строительстве, а ее масштабируемость дает большие возможности коммерциализации.
«Эта перспективная разработка является еще одним важным результатом петербургских исследователей, достигнутым в ходе реализации программы стратегического академического лидерства «Приоритет-2030». Ее применение будет во многом способствовать обеспечению национальных интересов освоения и развития Арктической зоны нашей страны. Сегодня на базе петербургских вузов и научных организаций развернута масштабная работа в этом направлении. Мы и дальше будем оказывать им необходимую поддержку. Развитие науки и новых технологий – один из ключевых приоритетов для нашего города, - подчеркнул Владимир Княгинин.
В планах разработчиков до 2030 года пройти путь от стендовых и натурных испытаний до опытно-промышленной эксплуатации и промышленного освоения технологии. Планируется полная верификация цифровой модели, патентование ключевых решений и разработка регламентов серийного производства свай. В перспективе технология может быть внедрена в строительные нормы. Дальнейшее развитие проекта предполагает масштабирование производства и адаптацию решения под различные типы многолетнемерзлых грунтов.