ИИ-сервис по оценке стоимости жилья появляется в работе банков
В ВТБ создали и масштабировали на всю Россию сервис аналитики для оценки новостроек.
В основе — универсальная платформа геоаналитики, позволяющая сопоставлять более 1000 слоев данных из банковской сферы, телекома и digital-сервисов. В решении используется обезличенная информация о жителях аналогичных домов, а также районов со схожей транспортной инфраструктурой, имеющих похожие интересы, структуру доходов, расходов и так далее.
Оценка рыночной стоимости строящейся недвижимости играет для банка важную роль в принятии решения о финансировании проектов. Новая разработка помогает повысить оперативность на этапе рассмотрения заявки на финансирование застройщика и получить более объективные и точные данные. Для застройщиков очень важна скорость и сроки. Использование программы позволило в 3 раза сократить сроки от обращения клиента до подписания кредитного договора.
В разных городах различные факторы оказывают влияние на определение цены на жилье. Рынок постоянно идет вперед, меняется инфраструктура, которая влияет на стоимость. Какие-то параметры устаревают, какие-то добавляются или обновляются. Сложность задачи по оценке недвижимости в масштабах России заключается в учете региональной специфики, макроэкономических колебаниях, большом разнообразии в качестве и расположении строительных объектов, что в свою очередь обуславливает выбор инструментов и способов моделирования.
«Программа учитывает множество факторов и показывает независимую от экспертного мнения оценку, что играет важную роль в общем процессе согласования сделки всеми участвующими подразделениями. Наиболее значимые конкурентные преимущества сервис дает в ситуации, когда строящийся жилой объект не имеет рядом аналогов, и оценить его, используя только метод сравнения с похожими соседствующими объектами, невозможно» — рассказал Максим Коновалихин, руководитель департамента анализа данных и моделирования, старший вице-президент банка ВТБ.
Проект строится на базе трех платформ: платформы гео-аналитики (Geo), платформы автоматического обучения моделей (AutoML) и MLOps-платформы (scibox). У каждой из них своя задача в рамках бизнес-процесса. Их объединение помогло достичь синергии и внести дополнительную ценность.
Проект стартовал с сегмента среднего и малого бизнеса. Следующая стадия — это использование программы как для целей крупного бизнеса, так и розничного ипотечного кредитования. Специфика проекта позволяет не только масштабировать его, но и применять в других сферах. Например, посчитать необходимое количество банкоматов в конкретном районе и количество наличных средств в каждом из них. Отлично подходит, когда на основе аналогичных данных нужно построить прогноз чего-нибудь нового.
На городские торги выставили здание недалеко от Донского монастыря.
Он находится по адресу: улица Шаболовка, дом 58, строение 2.
«Инвесторов приглашают на открытый аукцион по продаже отдельно стоящего нежилого здания площадью 14,8 квадратного метра в Донском районе столицы. Объект имеет свободное назначение, что открывает широкие возможности для ведения бизнеса. Заявку на участие в торгах можно подать до 28 февраля», — рассказали в пресс-службе Департамента по конкурентной политике Москвы.
Здание было построено в 1960 году. Поблизости есть остановки общественного транспорта, в 5–10 минутах ходьбы находится станция метро «Шаболовская».