Совет Федерации поблагодарил Ленинградскую область за помощь Донбассу древесиной
Строительная древесина, которую Ленинградская область поставила в качестве гуманитарной помощи на Донбасс, пойдет, в первую очередь, на восстановление больниц, школ и детсадов.
«Такая поддержка позволит жителям Республики восстановить свои дома, наладить быт, отремонтировать социальные объекты. Благодарю Вас за оказанную поддержку в организации поставок гуманитарной помощи», – отметил вице-спикер Совета Федерации Юрий Воробьев в благодарственном письме на имя губернатора региона Александра Дрозденко.
Первые грузовики со стройматериалами для ремонта зданий и инженерных сетей прибыли из Ленинградской области в подшефный город Енакиево в ДНР еще в июне. Лесозаготовители и лесопереработчики собрали и отправили несколько грузовиков с пиломатериалами для ремонта кровель, полов, окон зданий: доски, брус, вагонку, древесно-плитные материалы. Древесина будет использоваться для строительства и ремонта деревянных домов, для опалубки при производстве бетонных работ. Список материалов формировался, исходя из запросов администрации Енакиево. Помощь деловой древесиной и строительными материалами будет продолжаться.
Ленинградская область поставила в город Енакиево и поселки его агломерации стройматериалы для ремонта зданий и инженерных сетей, технику для ремонта дорог, оборудование для школ и медицинских учреждений, автобусы.
В Енакиево работают сотрудники региональных комитетов по здравоохранению, строительству и жилищно-коммунальному хозяйству.
ВТБ завершил пилотный проект по использованию инструментов машинного обучения.
Технология поможет банку эффективнее оценивать стоимость строящихся объектов и в ускоренном режиме принимать решения по выдаче кредитов на жилищное строительство. Новый сервис протестирован в 30 городах России.
В основе сервиса — универсальная платформа геоаналитики, запущенная ВТБ в 2020 году и позволяющая сопоставлять 170 слоев обезличенных данных из банковской сферы, телекома и digital-сервисов. В решении используется обезличенная информация о жителях аналогичных домов, а также районов со схожей транспортной инфраструктурой, имеющих похожие интересы, структуру доходов и расходов и т.д. Уникальный периметр данных анализируется методами машинного обучения для построения сложных нелинейных моделей оценки стоимости объектов. Все это позволяет оперативно принимать решения о выдаче банком кредитов под строительство.
При стандартном методе аналитики для принятия решения в ручном режиме сравнивают территориально близкие объекты. Модели, основанные на Big Data, позволяют оперативно получать качественную аналитику на базе гораздо большего объема разнообразной информации. Наиболее значимые конкурентные преимущества сервис дает в ситуации, когда строящийся жилой объект не имеет рядом аналогов, и оценить его, используя только метод сравнения с похожими соседствующими объектами, невозможно.
«При разработке сервиса мы столкнулись с тем, что рынок жилой недвижимости имеет очень динамичный характер. Для того, чтобы «успеть» за рынком в таком широком географическом периметре, мы разработали не просто модели машинного обучения, а Geo AutoML сервис. Он позволяет перестраивать модели в полностью автоматическом режиме. На сегодняшний день AutoML-решений на рынке много, но это первая история с применением геоаналитики. Поэтому сервис можно считать уникальным», — комментирует Максим Коновалихин, руководитель департамента анализа данных и моделирования – старший вице-президент ВТБ.
«Оценка рыночной стоимости строящейся недвижимости играет для банка важную роль в принятии решения о финансировании. Новая разработка позволяет нам повысить оперативность на этом этапе работы с проектом и получить более объективные и точные данные. Мы видим позитивные результаты с точки зрения повышения эффективности оценки проектов в рамках пилотирования сервиса и планируем до конца сентября масштабировать его на большинство крупнейших городов страны», — отметил Руслан Еременко, руководитель департамента регионального корпоративного бизнеса – старший вице-президент ВТБ.
Пока решение применяется только внутри банка, но в дальнейшем может стать доступным и сторонним пользователям — другим банкам и застройщикам жилой недвижимости.