Строители приступили к устройству фасада здания детского сада в подмосковной Кубинке
В городе Кубинка Одинцовского округа продолжается строительство детского сада на 330 мест, рабочие приступили к фасадным работам, сообщает пресс-служба Министерства стройкомплекса Московской области.
«На объекте более 120 рабочих и 5 единиц техники. Строители приступили к утеплению фасада. Продолжаются работы по устройству кровли и внутренних инженерных систем, черновой отделке помещений и монтажу оконных блоков, а также благоустройству территории», – рассказал глава ведомства Владимир Локтев.
Завершить возведение детского сада планируется до конца 2022 года. Строительство ведется в рамках госпрограммы МО «Строительство объектов социальной инфраструктуры» за счет средств бюджета.
В рамках проекта будет построено 3-этажное здание, в котором разместятся просторные игровые и спальные комнаты, залы для занятий музыкой и спортом, пищеблок, медицинский и процедурный кабинеты, административные и вспомогательные помещения. Его общая площадь составит более 5 тыс. кв. м.
На прилегающей территории установят теневые навесы, обустроят детские игровые и спортивные площадки.
ВТБ завершил пилотный проект по использованию инструментов машинного обучения.
Технология поможет банку эффективнее оценивать стоимость строящихся объектов и в ускоренном режиме принимать решения по выдаче кредитов на жилищное строительство. Новый сервис протестирован в 30 городах России.
В основе сервиса — универсальная платформа геоаналитики, запущенная ВТБ в 2020 году и позволяющая сопоставлять 170 слоев обезличенных данных из банковской сферы, телекома и digital-сервисов. В решении используется обезличенная информация о жителях аналогичных домов, а также районов со схожей транспортной инфраструктурой, имеющих похожие интересы, структуру доходов и расходов и т.д. Уникальный периметр данных анализируется методами машинного обучения для построения сложных нелинейных моделей оценки стоимости объектов. Все это позволяет оперативно принимать решения о выдаче банком кредитов под строительство.
При стандартном методе аналитики для принятия решения в ручном режиме сравнивают территориально близкие объекты. Модели, основанные на Big Data, позволяют оперативно получать качественную аналитику на базе гораздо большего объема разнообразной информации. Наиболее значимые конкурентные преимущества сервис дает в ситуации, когда строящийся жилой объект не имеет рядом аналогов, и оценить его, используя только метод сравнения с похожими соседствующими объектами, невозможно.
«При разработке сервиса мы столкнулись с тем, что рынок жилой недвижимости имеет очень динамичный характер. Для того, чтобы «успеть» за рынком в таком широком географическом периметре, мы разработали не просто модели машинного обучения, а Geo AutoML сервис. Он позволяет перестраивать модели в полностью автоматическом режиме. На сегодняшний день AutoML-решений на рынке много, но это первая история с применением геоаналитики. Поэтому сервис можно считать уникальным», — комментирует Максим Коновалихин, руководитель департамента анализа данных и моделирования – старший вице-президент ВТБ.
«Оценка рыночной стоимости строящейся недвижимости играет для банка важную роль в принятии решения о финансировании. Новая разработка позволяет нам повысить оперативность на этом этапе работы с проектом и получить более объективные и точные данные. Мы видим позитивные результаты с точки зрения повышения эффективности оценки проектов в рамках пилотирования сервиса и планируем до конца сентября масштабировать его на большинство крупнейших городов страны», — отметил Руслан Еременко, руководитель департамента регионального корпоративного бизнеса – старший вице-президент ВТБ.
Пока решение применяется только внутри банка, но в дальнейшем может стать доступным и сторонним пользователям — другим банкам и застройщикам жилой недвижимости.