Теплоизоляция: назначение и виды


01.03.2023 09:45

Энергосбережение — важная составляющая при строительстве любого здания. Как показывает практика, в обычном многоэтажном доме теплопотери могут составлять до 40%, ведь многие материалы не способны сохранить и удержать температуру. Теплоизоляция — это эффективный способ обеспечить микроклимат внутри помещения, шумоизоляцию, а также уменьшить общую массу конструкции. Кроме того, она способна сокращать расходы владельцев сооружений на отопление, как следствие снижается выброс продуктов горения и улучшается экологическая обстановка.


Разнообразие выбора

Теплоизоляционные материалы классифицируют по нескольким признакам:

  • структура: волокнистые, ячеистые, композитные, зернистые;
  • назначение: промышленные и бытовые;
  • форма выпуска: сыпучие, рулонные, напыляемые, листовые, штучные;
  • материал: натуральные и синтетические;
  • тип сырья: органические, неорганические, смешанные.

Каждый вид утеплителя имеет свою технологию монтажа и сферу применения, которые зависят от свойств и состава материала. К примеру, для волокнистых необходима гидроизоляция, сыпучие используются на горизонтальных поверхностях, а если у конструкции сложная геометрическая форма, проще утеплитель напылять или монтировать штучные изделия.

Сейчас можно приобрести теплоизоляционные материалы предотвращающего типа. Они отличаются низкими проводящими свойствами, а также уменьшают расход тепла благодаря уменьшению инфракрасного излучения.

Неорганические утеплители

В производстве неорганических теплоизоляторов применяются шлак, асбест, горные породы и стекло. В результате их переработки получают: стекло и минвату, пеностекло, керамику, легкий бетон, в основе которого лежат вермикулит или вспученный перлит.

Материал выпускается в форме плит, матов, рулонов или сыпучим.

Стекловата

Производится из того же материала, что и стекло. Эта разновидность ваты отличается более толстыми и длинными волокнами, повышенной прочностью и упругостью. Она отлично поглощает любые звуки, пожаробезопасна и не подвержена химическому воздействию. Нагреваясь, не выделяет вредных веществ.

Стекловата отличается:

  • плотностью до 130 килограммов на метр кубический;
  • устойчивостью к воздействию высоких температур (до 450 градусов);
  • низкой гигроскопичностью;
  • высокой коррозийной стойкостью.

У материала коэффициент теплопроводности колеблется в пределах 0,03-0,052 ватта на метр на Кельвин.

Керамическая вата

В основе материала лежит окись кремния, циркония или алюминия. Для изготовления используется метод раздува или центрифуга.

Керамическая вата отличается:

  1. Температурной стойкостью свыше 1000 градусов. Нагреваясь более 100 градусов становится отличным электроизолятором.
  2. Плотностью менее 350 килограммов на метр кубический.
  3. Коэффициентом теплопроводности 0,13-0,16 ватт на метр на Кельвин при +600 градусов.

Керамическая вата более устойчива к высокой температуре даже чем минеральная. Она не подвержена воздействию агрессивных химических веществ и не деформируется.

Минеральная вата

Минвата бывает шлаковой и каменной. Первая получается из материалов, остающихся вследствие литья цветных и черных металлов. В основе второй лежат горные породы, такие как: базальт, доломит, диабаз, известняк и прочие.

Чтобы связать основу применяется компонент в основе которого лежат фенол или карбамид. Первый меньше боится влаги, поэтому чаще используется при строительстве.

Минеральная вата отличается:

  1. Нулевой горючестью. Кроме того, она способна противодействовать распространению огня, из-за чего используется как эффективное противопожарное средство.
  2. Повышенной химической пассивностью и низкой гигроскопичностью.
  3. Высоким шумопоглощением. Минеральная вата — это практичная звукоизоляция.
  4. Крайне низкой усадкой. Даже спустя многие годы минеральная вата не изменяет своих размеров. Благодаря этому удается избежать мостиков холода при строительстве.

У минеральной ваты есть один недостаток — это высокая паропроницаемость. При использовании этого материала необходимо укладывать пароизоляционный слой.

Органическая теплоизоляция

Материал отличается высокой пожаробезопасностью, не промокает и не подвержен воздействию биологически активных веществ. Подходит для поверхностей, не нагревающихся выше 150 градусов Цельсия. Органическая теплоизоляция размещается в виде внутреннего слоя. К примеру, оштукатуренные фасады или тройные панели.

Производится из сырья с естественным происхождением. Например, отходы от деревообрабатывающего производства или сельского хозяйства. В их составе также содержатся цемент и некоторые виды пластика.

Пено-поливинилхлоридный утеплитель

В составе материала поливинилхлоридные смолы. ППВХ приобретает пенистую структуру после поризации. Он является универсальным теплоизолятором, ведь поливинилхлорид может быть, как мягким, так и твердым. Производят ППВХ утеплители для каждого вида работ: стеновые, кровельные, фасадные, напольные, для входных дверей.

Пенополиуретановый утеплитель

Основа материала полиэфир с добавление воды, дизоцианата и эмульгаторов. В химическую реакцию они вступают благодаря воздействию катализатора. В результате получается совершенно новое вещество, отличающееся отменным уровнем шумопоглощения, химической пассивностью, а также неспособностью поглощать влагу.

Материал отличается:

  1. Коэффициентом теплопроводности в пределах 0,019-0,028 ватт на метр на Кельвин. Это одно из лучших значений среди всех изоляционных материалов.
  2. Плотностью 40-80 килограммов на метр кубический. Если показатель равен 50 и более, ППУ обретает влагостойкость.

Пенополиуретановый утеплитель наносится методом напыления, подходит для потолков сложной конструкции и стен.

Пенополистирол

ППС или пенопласт состоит из воздуха на 98%. 2% — это полистирол, получаемый из нефтепродуктов. Также в составе материала присутствует незначительное количество модификаторов. Как правило, это антипирены.

Отличительными особенностями ППС являются:

  • высокие гидроизоляционные свойства;
  • повышенная коррозийная устойчивость;
  • коэффициент теплопроводности в пределах 0,037-0,042 ватта на метр на Кельвин;
  • высокая сопротивляемость микрофлоре и биоагентам.

У материала низкая горючесть. Он самостоятельно затухает, а при возгорании выделят в 7 раз меньше тепловой энергии чем древесина.

Древесноволокнистая изоляционная плита

Состав древесноволокнистой изоляционной плиты схож с ДСП, однако в его основе используются обрезки стеблей кукурузы или соломы, либо древесные отходы, старая бумага и так далее. Материал связывают синтетические смолы, разбавленные антисептиками, антипиренами и гидрофибизирующими веществами.

ДВИП отличается:

  • плотностью до 250 килограмм на метр кубический;
  • пределом прочности на изгиб до 12 мегапаскалей.

Коэффициент теплопроводности древесноволокнистой изоляционной плиты менее 0,07 ватт на метр на Кельвин.

Пеноизол (мипора)

Мипора получается в результате взбивания водной эмульсии мочевиноформальдегидной смолы. Чтобы избежать хрупкости материала, в сырье добавляется глицерин. Чтобы получить пену в состав вводятся добытые из нефти сульфокислоты. Чтобы масса затвердела, необходим катализатор. В его качестве выступает органическая кислота.

Мипора подается в виде блоков или крошки. Если материал жидкий, его предварительно необходимо залить в специальные полости, где он затвердевает при комнатной температуре.

Пеноизол отличается:

  1. Коэффициентом теплопроводности в пределах 0,03 ватта на метр на Кельвин.
  2. Плотностью до 20 килограмм на метр кубический. Если сравнивать с пробкой, то он меньше примерно в 10 раз.
  3. Температурой возгорания свыше 500 градусов. Если показатель ниже, то материал не горит, а обугливается.

Среди минусов минипоры можно отметить повышенное поглощение жидкости и подверженность воздействию агрессивных химических веществ.

Вспененный полиэтилен

Производится путем добавления к полиэтиленовой основе пенообразующего вещества. В результате получается материал, имеющий внутри многочисленные мелкие поры. У него отменные пароизоляционные свойства.

Материал отличается:

  • плотностью 25-50 килограммов на метр кубический;
  • температурным диапазоном применения от -40 до +100 градусов;
  • низким влагопоглощением;
  • высокой биологической и химической пассивностью.

Кроме того, вспененный полиэтилен хорошо защищает сооружение от воздействия внешних шумов.

Фибролит

Материал производится из тонкой древесной стружки с добавлением цемента или магнезиального компонента. Фибролит выпускают в форме плит, которые не подвержены биологически и химически агрессивным воздействиям. Отлично защищает от влаги и шума. Подойдет и для изоляции бассейнов.

К основным характеристикам материала относят высокую огнестойкость, плотность в пределах 300-500 килограммов на метр кубический, а также коэффициент теплопроводности 0,08-0,1 ватт на метр на Кельвин.

Сотопласт

Название материала исходит из его формы в виде шестигранных ячеек. Наполнитель сотопластового утеплителя — это углеродные, целлюлозные, стеклянные, органические волокна или специальная ткань, которые покрываются пленкой. Чтобы связать между собой материал, используется фенольная или эпоксидная термоактивная смола. Внешние стороны панелей — это тонкие слоистые листы из пластика.

Характеристики материала могут быть разными. На них влияет сырье, из которого он изготовлен, количество смолы, а также размеры ячеек.

Эковата

Производится их материалов, остающихся в результате бумажно-картонного производства. В ход идут гофрированный картон, газеты, журналы, бракованные книги и так далее. Если использовать макулатуру, качество эковаты становится несколько хуже. Она будет неоднородной, разносортной и быстро подвергаться загрязнению.

Эковата отличается:

  1. Высокой звукоизоляцией. Всего 1,5 сантиметра материала способны поглотить шум до 9 децибел.
  2. Повышенной теплоизоляцией. Но тут есть и один минус — постепенно эковата истончается и утрачивает до 20% от своего первоначального объема.
  3. Высоким впитыванием влаги. Она способна поглотить 9-15% от своего объема.

Огромное преимущество эковаты в том, что ее можно укладывать способом сплошного напыления. В результате нет швов, а, следовательно, повышаются и все теплоизоляционные характеристики.

Утеплитель из древесностружечных плит

ДСП состоит из мелкой стружки, которая занимает 9/10 всего объема материала. Скреплена она синтетическими смолами, антипреном, гидрофобизатором и антисептическим веществом.

Материал отличается:

  • плотностью 500-1000 килограмм на метр кубический;
  • пределом прочности на изгиб 10-25 мегапаскалей и растягивания 0,2-0,5 мегапаскалей;
  • влажностью 5-12%.

ДСП способен впитывать жидкости в объемах 5-30%.

Арболитовый утеплитель

В составе материала стружка, мелкие опилки, нарезанный камыш или солома. В основу обязательно входят химические добавки (растворимое стекло, сернокислый глинозем и хлористый кальций) и цемент. Получившийся состав обязательно обрабатывается минерализатором.

Арболитовый утеплитель характеризуется:

  • плотностью 500-700 килограмм на метр кубический;
  • пределом прочности на изгиб 0,4-1 мегапаскаля;
  • пределом прочности на сжатие 0,5-3,5 мегапаскаля.

Кроме того, его коэффициент теплопроводности равен 0,08-0,12 ватт на метр на Кельвин.

Смешанная теплоизоляция

Этот вид утеплителей производят из асбестовой смести с добавлением слюды, доломита, перлита или диатомита. Чтобы связать основу, используются минеральные составляющие. Изначально материал выглядит как жидкое тесто. Его наносят на нужные плоскости и ожидают полного высыхания. Также из теплоизоляции смешанного типа производят скорлупы и плиты.

Материал отличается термостойкостью и выдерживает температуру до 900 градусов. У него есть также одна особенность — это способность впитывать влагу. Поэтому при строительстве обязательно используется гидроизоляция. Теплопроводность материала свыше 0,2 ватта на метр на Кельвин.

Отражающая теплоизоляция

Это так называемая рефлекторная изоляция, которая замедляет движение тепла. Любой стройматериал способен как поглощать его, так и впоследствии излучать. Все теплопотери возникают преимущественно вследствие выхода инфракрасных лучей, пронизывающих даже материалы с низкой проводимостью.

К примеру, серебро, очищенный полированный алюминий и золото способны отражать до 99% тепла. Если их взять и создать вокруг барьер из полиэтилена, получается отличный теплоизолятор, который также будет обладать пониженной паропроводностью. Такие материалы зачастую применяются для утепления саун и бань.

Сегодня используются отражающие утеплители в виде одно- или двуслойного полированного алюминия и вспененного полиэтилена. Материал отличается ощутимым эффектом при своей толщине в 1-2,5 сантиметра.

На что обращать внимание при выборе

Чтобы сократить потери тепла, улучшить звукоизоляцию сооружения и снизить расходы на отопление, необходимо ориентироваться на:

  1. Вес утепляющего слоя. Он не должен значительно утяжелять конструкцию.
  2. Теплоизоляционные свойства. Прежде чем приобрести материал, изучите его технические характеристики.
  3. Жесткость и способность сохранить свою форму под воздействием нагрузки. Утеплители бывают мягкими, полужесткими и жесткими.
  4. Паропроницаемость, которая обеспечивает циркуляцию воздуха и препятствует образованию конденсата. При наружном утеплении этот показатель должен быть минимальным, при внутреннем максимальным.
  5. Экологичность и срок эксплуатации. Качественный материал не оказывает негативного влияния на здоровье человека и окружающую среду. Способен выполнять свою функцию свыше 20 лет.
  6. Горючесть, ведь для деревянных конструкций чем показатель выше, тем лучше.

Прежде чем приобрести теплоизоляцию, нужно учесть то, куда она будет монтироваться.

  1. Для кровли важно, чтобы длина рулонного утеплителя была достаточной для ската. Толщина должна быть больше, чем для отделки стен. Не забывайте про использование мембран под слой теплоизоляции. Так вы защитите материал от влаги и продлите срок его полезного использования.
  2. Для стен важно учесть множество параметров. Через них теряется до 40% тепла, поэтому правильно выбранный материал способен снизить стоимость эксплуатации жилья и размер оплаты за коммунальные услуги.
  3. Для фундамента важно учесть, что утеплитель будет регулярно подвергаться воздействию влаги и механическим нагрузкам. Лучше всего подойдут различные марки экструзионного пенополистирола, выпускающегося в виде прочных плит. Они способны сохранить целостность фундамента, но тут также важно использовать гидроизоляцию.
  4. Для пола используются разные виды утеплителей. Так, например, в деревянном доме лучше применять стекловату и базальтовые материалы. Они отличаются экологичностью, эффективностью и негорючестью. Для теплого пола стоит применять ЭПС, который рассеивает тепло и способствует повышению эффективности системы отопления. Под стяжку важно учесть прочность материала. Тут будет уместен базальтовый утеплитель повышенной прочности или экструзионный пенополистирол. Для пола по грунту стоит учесть почвенную влагу и устойчивость материала к нагрузкам.

Используйте качественные теплоизолирующие материалы. Их цена зависит от технологии изготовления, используемого сырья, а также производителя. Нередко совершая покупку, мы ориентируемся не га назначение материала, а на его стоимость. В результате получаем слабый теплоизоляционный эффект и увеличение затрат на отопление. Кроме того, существует такой минус как это риск разрушения конструкции из-за ее неправильного утепления.

Еще одна часто встречающаяся ошибка — это покупка дешевого материала от неизвестных производителей. Зачастую их производят из некачественного сырья, что ухудшает физические и механические характеристика, а также способно повлиять на состояние здоровья человека.

Важно перед приобретением проверить сертификаты качества и гарантии от завода-изготовителя. Иначе вы рискуете тем, что спустя всего лишь несколько лет придется делать ремонт заново. Как следствие — значительное увеличение расходов не только на коммунальные услуги, но и на содержание строения.

Помните! От качества теплоизоляции зависит комфорт и возможное сокращение затрат на отопление зимой и кондиционирование в жаркое время года. Главная задача теплоизоляции — создать комфортную микросреду в помещении.


ИСТОЧНИК ФОТО: ASNinfo

Подписывайтесь на нас:

Качественный подход


21.10.2019 15:35

Инновационные технологии позволяют ускорить дорожное строительство и повысить сроки службы асфальтобетонного покрытия. Однако их масштабному внедрению мешают устаревшие нормативы.


Премьер-министр РФ Дмитрий Медведев порекомендовал регионам активнее внедрять в дорожное строительство новые технологии. С этим предложением он выступил на прошлой неделе в Екатеринбурге на совещании по вопросам реализации национального проекта «Безопасные и качественные автомобильные дороги». По его словам, в этом году на эту программу из федерального бюджета было выделено 110 млрд рублей. Однако ряд регионов страны (Приморье, Чукотка, Крым) освоили менее трети предоставленных средств.

Глава российского правительства также предложил наращивать в дорожной отрасли долю контрактов на принципах полного жизненного цикла. «Это мировая практика, она позволяет существенно улучшить качество работ и обеспечить последующий мониторинг. Она, конечно, дисциплинирует подрядчиков, которые не заинтересованы в том, чтобы свой брак постоянно переделывать. К концу 2019 года на принципах жизненного цикла в России должен заключаться каждый 10-й контракт на дорожные работы, то есть 10%. Пока удалось достичь показателя приблизительно 7%, поэтому нужно с подготовкой этих документов в целом ряде регионов поторопиться», – подчерк­нул Дмитрий Медведев.

Экспериментальный образец

Стоит отметить, что Петербург и Москва в нацпроекте «Безопасные и качественные автомобильные дороги» не участвуют. В соседней Ленобласти на данный момент по годовому плану данная программа реализована приблизительно на 70%. Параллельно идет подготовка проектов, которые должны стартовать в 2020-м. В целом же в Петербурге и Ленобласти власти стараются активно заниматься ремонтом и строительством дорог и вне федеральных программ. Особое внимание чиновники сейчас уделяют качеству проводимых работ. Многие крупные подрядные организации обоих регионов на своих объектах стараются задействовать инновационные технологии, в том числе и собственные. Правда, чаще всего пока в качестве эксперимента или теста.

В частности, компания «ВАД» совместно с «Газпромнефть – Битумные материалы» летом этого года на тестовом участке в Ленобласти задействовала в работе технологию нанесения защитно-восстанавливающего состава «Брит» (ЗВС-Р) на дорожное покрытие. Этот продукт изготавливается на основе раствора битумно-полимерного вяжущего вещества в органических растворителях и восстанавливает поверхностную структуру асфальтобетона, эффективно защищая его покрытие. Предполагается, что использование ЗВС-Р на автомобильных дорогах поможет продлить срок службы асфальтобетонного покрытия на два-три года и снизит затраты на обеспечение межремонтного периода.

Также этим летом компания «ДСК АБЗ-Дорстрой» уложила километровый экспериментальный участок асфальта на трассе Огоньки – Стрельцово – Толоконниково в Ленобласти, по методу объемного проектирования. В данной технологии был использован ЩМА-19 (щебеночно-мастичный асфальт), а не ЩМА-20, требуемый по ГОСТу. Новая смесь призвана помочь снизить колееобразование, возникающее из-за высокой интенсивности движения на дорогах. Отмечается, что срок эксплуатации дорожных одежд с использованием данного материала в полтора-два раза выше, чем у традиционных смесей. 

Необходима актуализация

По мнению первого заместителя директора компании «Стройтех» Сергея Ивашова, качественное строительство дорог невозможно без актуализации действующих государственных стандартов. В настоящее время они меняются, но недостаточно быстро, не успевая за появлением все новых технологий, начиная от проектирования, заканчивая повседневной эксплуатацией дорог. Также необходимо своевременно обновлять различные подзаконные акты.

«Другая боль дорожников – это конкурсы. Сейчас заказчику требуется выбрать подрядчика с наибольшим снижением начальной максимальной цены. При этом демпингующая организация – не обязательно «Рога и копыта». Минимизирование цены приводит к тому, что работы выполняются некачественно, а иногда и вовсе не могут быть завершены. Соответственно, проект остается нереализованным, а проведение дополнительного конкурса требует дополнительных средств и времени. Необходимо отходить от проведения аукционов к прямым договорам, но для этого необходимо существенно менять все законодательство», – полагает Сергей Ивашов.

Мнение

Максим Хрипунов, директор Департамента «3D-системы автоматического управления TOPCON»                    ООО «Геостройизыскания»:

– В настоящее время при проектировании и строительстве активно применяются различные сканирующие системы, предназначенные для оперативного сбора данных, на основе которых создаются проекты. Получение реальных данных о поверхности дороги входит в часть задач системного рабочего процесса, включающего работу системы 3D на асфальтоукладчиках и дорожных фрезах. Преимущества такой технологии: быстрый сбор большого количества данных; четко спрогнозированное использование времени, оборудования и материалов; проектирование с учетом всех требований и критериев; выполнение работ по фрезерованию и укладке; работа с переменным слоем; интеллектуальное уплотнение.

Сергей Луценко, генеральный директор компании «Дорианс»:

– Сейчас все говорят о необходимости применения BIM-технологий при проектировании дорог. Эту позицию мы поддерживаем и в своих проектах задействуем информационное моделирование. Но в целом, чтобы эти технологии действительно показали свою эффективность, важно их задействовать всем, а не только проектировщикам. Сейчас, к сожалению, они почти не используются при согласовании с заказчиками, представителями ресурсо­снабжающих организаций и др. В частности, специалист может с помощью BIM быстро подготовить проект, но далее экспертиза все равно от него попросит чертежи в PDF-файле. С одной стороны, мы внедряем прогрессивную программу, с другой – барьеры для ее эффективного использования сохраняются.

Михаил Смирнов, продакт-менеджер направления «Ремонт бетона» подразделения строительной химии Master Builders Solutions концерна BASF:

– Пока, на наш взгляд, распространение инновационных технологий в дорожной отрасли идет достаточно медленно. Несмотря на их очевидные плюсы, производителям все еще приходится убеждать дорожников, что подобные подходы оправдывают свою стоимость. В целом же решений, способных обеспечить быстрый и качественный ремонт мостов и дорог, на рынке достаточно много. Но хотелось бы отметить, что ставка должна делаться на комплексное использование существующих решений. В частности, составы для ремонта бетона, его вторичной защиты и гидроизоляции необходимо подбирать с учетом индивидуальных особенностей объекта.


АВТОР: Виктор Краснов
ИСТОЧНИК: СЕ №31(891) от 21.10.2019
ИСТОЧНИК ФОТО: Никита Крючков

Подписывайтесь на нас:

Купол как уникальная конструкция


21.10.2019 15:28

Лаборатория деревянных конструкций ЦНИИСК им. В. А. Кучеренко АО «НИЦ «Строительство» совместно с ООО «ЦНИПС ЛДК» разрабатывает проекты большепролетных каркасов покрытия из клееных деревянных конструкций (КДК). По их проектам построено более 10 аквапарков по всей России. Крупнейший из них – аквапарк «Питерлэнд» в парке 300-летия Санкт-Петербурга. Об особенностях проекта «Строительному Еженедельнику» рассказал заведующий лабораторией деревянных конструкций ЦНИИСК им. В. А. Кучеренко Александр Погорельцев:


– В бассейнах и аквапарках КДК имеют преимущества перед конструкциями из металла или железобетона. Для них хлорирование или озонирование воды создает агрессивную среду, нейтральную для древесины.

В ТРК «Питерлэнд» смонтирован ребристый купол диаметром 90 м и высотой 45 м. Особенности конструкций связаны в основном с его габаритами. В плане меридиональные ребра купола опираются с шагом 14,5 м на нижнее железобетонное кольцо и на стальное верхнее кольцо диаметром 5 м. Основные ребра длиной около 60 м выполнены в виде серповидных сборных ферм и сами по себе являются уникальными в части принятых конструктивных решений, изготовления, сборки и монтажа. На эти ребра с шагом 6 м опираются девять криволинейных кольцевых элементов, из которых два – верхний и нижний – являются опорами для 60 промежуточных меридиональных ребер. Нижний кольцевой элемент выполнен в виде горизонтальной фермы, воспринимающей реакции опор от промежуточных ребер и нагрузки от кольцевой технологической площадки. Остальные кольца являются распорками между меридиональными ребрами для обеспечения их устойчивости.

В конструкции купола реализованы основные принципы «системы ЦНИИСК», все основные узлы и стыки поясов серповидных ребер выполнены на наклонно вклеенных стержнях и V-образных анкерах. Это уникальная система узловых соединений, основанная на вклеивании в древесину арматурных стержней периодического профиля. Россия обладает приоритетом в области подобных узловых соединений деревянных конструкций. 

Все жесткие стыки ребер и соединения закладных деталей со стержнями, вклеенными на заводе и на монтаже, выполнены ручной сваркой. Экспериментальные исследования, проведенные в ЦНИИСК с целью оценки влияния сварки на соединения, показали, что существующий «психологический» барьер при сварке деревянных конструкций успешно преодолевается. При соблюдении нескольких рекомендаций сварка практически не сказывается на несущей способности соединений.

Меридиональные ребра состоят из четырех отправочных блоков полной заводской готовности, соединяемых на монтаже жесткими стыками на сварке. Все блоки по торцам снабжены выпусками V-образных анкеров и закладными деталями.

Проблемы допусков по длине для меридиональных ребер решены с помощью зазоров около 40 мм между торцами поясов, заполняемых полимербетоном после сварки V-образных анкеров и стальных полос. Этим достигается плотный контакт по площадкам сжатия.

Треугольная решетка меридиональных ребер включает горизонтальные и вертикальные элементы. Горизонтальные соединены с поясами на цилиндрических нагелях и шпильках, а вертикальные – с усилием растяжения до 40 т – путем сварки выпусков вклеенных стержней и закладных деталей на раскосах.

Сборка и монтаж меридио­нальных ребер производились в три этапа: сначала на жестком горизонтальном стенде производилась предварительная сборка блоков в проектных габаритах, затем окончательная сборка в вертикальном стальном стенде с последующей установкой блоков в проектное положение.

Из-за кризиса 2008 года после монтажа каркаса купола строительство было приостановлено – и возобновлено только в 2011 году. В результате влажность древесины, не защищенной от атмосферных осадков, значительно превысила величину равновесной влажности, соответствующей условиям эксплуатации. Быстрое завершение строительства и ввод в эксплуатацию могли привести к неравномерной усушке древесины и, как следствие, к появлению значительных трещин и расслоений. Разработанные в ЦНИИСК рекомендации по обеспечению температурно-влажностного режима при завершении строительства позволили избежать этих проблем.


ИСТОЧНИК: СЕ №31(891) от 21.10.2019
ИСТОЧНИК ФОТО: Лаборатория деревянных конструкций ЦНИИСК им. В. А. Кучеренко
МЕТКИ: ПИТЕРЛЭНД

Подписывайтесь на нас: